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Probabilistic models of transcriptional regulation

John Reid

Summary

Regulation of transcription lies at the heart of many of the most critical cellular be-

haviours. This regulation is mediated by the binding of transcription factors to the

genome. There is much uncertainty about many aspects of this process. Firstly, indi-

vidual transcription factors preferentially bind to a variety of genomic sequences. Even

when these preferences are known, predicting transcription factor binding sites has a high

false positive rate. Secondly, the sequence preferences of many transcription factors are

uncharacterised. Biological experiments only provide indirect evidence of transcription

factor binding. The task of inferring the sequence preferences given these indirect data

is difficult. Thirdly, transcription factors do not operate in isolation. Sets of interacting

transcription factors are reused across distinct cellular programs. Many of these cellu-

lar programs and sets of transcription factors remain to be characterised. This thesis

uses probabilistic modelling techniques to present three contributions that address the

aforementioned uncertainty about transcriptional regulation.

I describe a novel method that uses conservation of genomic sequences between related

species to improve predictions of transcription factor binding. Unlike other similar

methods, a multiple alignment of the regions of interest is not required.

Some of the most popular and best methods for characterising the sequence binding

preferences of transcription factors are not able to handle data sets of the size generated

by recent biological techniques. I present a novel technique that uses suffix trees to

speed up one of the most popular existing techniques so that it can be applied to much

larger data sets.

I present a hierarchical non-parametric probabilistic model that captures interactions

between transcription factors and their target genes. This model infers several well

established interactions between transcription factors in an unsupervised setting.

Taken together these methods demonstrate how apposite probabilistic modelling tech-

niques are for quantifying uncertainty in transcriptional regulation.
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Chapter 1

Introduction

1.1 The biology of transcriptional regulation

1.1.1 Genomes and genes

An individual’s genome is the sum of its inheritable traits. Most species, including all

eukaryotes, encode a significant part of this information in deoxyribonucleic acid (DNA)

macromolecules called chromosomes. A chromosome carries genetic information as a

sequence of nucleotides. A nucleobase (or simply base) forms part of each nucleotide.

In DNA there are four possible nucleobases: adenine; cytosine; guanine; and thymine.

The genetic information stored in a chromosome is often summarised as a sequence of

the four characters A, C, G and T representing the four possible bases. The chromosomes

contain regions called genes that contain the information necessary for the cell to create

molecules called gene products. Proteins are the archetypal gene products but some

genes express ribonucleic acid (RNA) products. The process by which the information

stored in a gene is converted into a gene product is called gene expression.

A single molecule of DNA exists as a single strand. Chromosomes are macromolecules

that consist of two complementary molecules of DNA. The two strands are arranged in

the well known double-helix configuration [Watson and Crick, 1953]. The complemen-

tary nature of the two strands is enforced by bonds between the nucleobases. Adenine

binds to thymine and cytosine binds to guanine. If the sequence on one strand is known,

the sequence on the complementary strand can be read by switching As with Ts and Cs

with Gs. The backbone of a single-stranded DNA molecule is not symmetric and this

imparts a directionality on the sequence associated with it. The two ends of the DNA

molecule are labelled the 5’ and 3’ end. The 5’ end has a terminal phosphate group and

the 3’ end has a terminal hydroxyl group. Conventionally the sequence is read from the

1



2 1.1. THE BIOLOGY OF TRANSCRIPTIONAL REGULATION

5’ end to the 3’ end. The two strands in double-stranded DNA are oriented in opposing

directions. When considering the sequence on both strands of DNA we often talk of

taking the reverse complement. The opposing sequences are complemented because of

how the nucleobases bond and they are written in reverse order because of the direc-

tionality of the two strands. For example, if the sequence on one strand was ATTCGG,

the reverse complement sequence on the other strand would be CCGAAT.

1.1.2 Regulatory networks

Gene expression levels affect many aspects of cellular function and the regulation of gene

expression levels is crucial for a cell to function correctly. For example, correct spatio-

temporal expression patterns in the Drosophila embryo are critical for the successful

development of the organism’s body plan [Johnston and Nüsslein-Volhard, 1992,Rivera-

Pomar and Jãckle, 1996] The regulation of expression levels is crucial in yeast’s cellular

response to external stimuli such as heat shock [Boy-Marcotte et al., 1999].

Most aspects of cellular behaviour involve several gene products. Interactions between

genes and their products can form complex gene regulatory networks that encode par-

ticular behaviours. Decoding (or reverse engineering) these networks is crucial to under-

stand these behaviours at a molecular level. In gene regulatory networks the expression

of each gene’s products is regulated by the activity of other genes. Although regulation

can occur at many points in the process of gene expression, in this thesis I focus on tran-

scriptional regulation, one of the most important and pervasive methods of regulation

in eukaryotes.

Evolution is a continuous and gradual process. Similar behaviours and phenotypes in

related species are likely to derive from a common ancestor and thus share a common

underlying mechanism. In particular regulatory networks are often shared across large

evolutionary distances [Davidson, 2006] and the mechanisms that implement these net-

works are also commonly conserved [He et al., 2011]. The expectation that regulatory

networks are shared across clades or greater evolutionary distances can be very helpful

in the study of such systems. We can often use data from related species to improve or

validate our inferences in the species of interest. These expectations should be tempered

by evidence that some systems in closely related species have diverged significantly and

implement the same behaviours using different mechanisms [Odom et al., 2007].
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1.1.3 Transcriptional regulation

The first stage in gene expression is transcription. Transcription is the process of creating

a complementary RNA copy of a sequence of DNA. As transcription is a necessary part

of gene expression it is a convenient point at which a cell can regulate its gene expression

levels. It is perhaps because of this convenience that so many cellular behaviours use

transcriptional regulation as a control mechanism.

To understand transcriptional regulation, we should first understand transcription. In

transcription, the RNA polymerase enzyme binds to a region upstream of the gene

called the promoter and moves along the DNA sequence producing a complementary

strand of RNA. The genomic location at which transcription starts is referred to as

the transcription start site (TSS). The rate of transcription can be affected by proteins

called transcription factors (TFs). That the expression of genes could be affected in

this way was first discovered in studies of Escherichia coli [Gilbert and Maxam, 1973,

Maizels, 1973, Dickson et al., 1975]. There are several types of TF: general TFs are

necessary for the RNA polymerase to position at the promoter; activating TFs increase

the rate at which the RNA polymerase associates with the promoter increasing the rate

of gene expression; repressing TFs are similar to activating TFs but work oppositely,

decreasing the interaction between the RNA polymerase and the promoter to reduce

the rate of expression; specificity TFs alter the specificity of the RNA polymerase for a

whole class of promoters, for example sigma factors in prokaryotic transcription [Gruber

and Gross, 2003]; insulating TFs such as CTCF partition the genome into regulatory

domains [Ohlsson et al., 2001].

1.1.4 Transcription factor binding

TFs act by binding to the DNA at transcription factor binding sites (TFBSs). TFBSs

are also sometimes known as response elements (REs). Many TFs have sequence-specific

binding preferences, that is, they prefer to bind to TFBSs that comprise a particular

sequence of base pairs. These TFs can show variability in their binding sequences [Mani-

atis et al., 1975]. For example, the TATA-binding protein (TBP) which is a general TF,

prefers to bind to the sequence TATAAAA but can also bind to sequences such as TATATAT

or TATATAA. A molecular model of the structure of TBP-DNA binding is shown in Fig-

ure 1.1. The preferred binding sequence for a TF is termed its consensus sequence.

In general a TF will have differing propensities for binding different DNA sequences.

Sarai and Takeda demonstrated this by analysing the binding affinities of the cro and

repressor TFs to mutated versions of the λ operator [Sarai and Takeda, 1989].
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Figure 1.1: A molecular model of the structure of TBP-DNA binding. The model was
generated by the 3D-DART web server [Dominguez et al., 2003].

TFs do not work in isolation from each other. TFBSs often appear in clusters or cis-

regulatory modules (CRMs) (also known as enhancers ), presumably to enable interac-

tions between TFs binding there. As each TF is itself a gene product, CRMs allow the

genome to encode responses to particular expression levels. This feedback is the ba-

sis of many well characterised gene regulatory networks, for example much of the gene

expression in Saccharomyces cerevisiae can be explained in this way [Lee et al., 2002].

Most well characterised enhancers are close to the genes that they regulate but there

are many examples of enhancer-gene interactions over large genomic distances. In the

Drosophila Antennapedia complex the T1 enhancer acts on the distal Sex combs reduced

gene, which is located on the other side of the nearby fushi tarazu gene [Gindhart

et al., 1995,Calhoun et al., 2002,Calhoun and Levine, 2003]. The sonic hedgehog gene

is regulated by an enhancer located nearly one megabase away [Amano et al., 2009].

Bateman et al. have shown that a Drosophila melanogaster enhancer can act on multiple

genes on separate chromosomes [Bateman et al., 2012]. In general, TFBSs tend to be

located close to transcription start sites (TSSs) although they can also be found in
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intergenic regions and even gene deserts. There are also examples of intronic and exonic

TFBSs. This distribution of sites around genomic features is not uniform and can be

used to help in TFBS prediction.

Each TF has a particular protein structure and TFs can be organised into families on this

basis. Members of the same family often exhibit similar binding preferences [Sandelin

and Wasserman, 2004].

Sequence preferences are not the only way patterns of TF binding are determined. In the

rest of this section I highlight some of the other mechanisms implicated in the process.

Competitive binding

Sterically two TFs cannot bind to the same section of DNA. If a TFBS can be bound

by different TFs and both are present in the nucleus they will compete for that binding

site [Teif and Rippe, 2010]. This is termed competitive binding. One competing TF

might be an activator while another might be a repressor. As only one TF can bind the

DNA at the TFBS this allows the genome to encode a response to relative expression

levels of TFs. TFs of the same family are often implicated in competitive binding as

their sequence preferences are typically similar.

Weak binding sites

The cell uses TFBSs of varying affinities to direct transcriptional responses. Tanay

showed that weak binding sites in several Saccharomyces species are functional [Tanay,

2006]. Several computational models of gene expression support the idea that weak

binding sites are important for correct expression patterns [Gertz et al., 2008, Segal

et al., 2008, Koohy et al., 2010, McLeay et al., 2012]. These models predict that weak

binding sites permit a sensitive response to TF concentration levels in the cell. Weak

binding sites may also be relevant to competitive binding as weaker binding sites are

more likely to match the binding preferences of more than one TF. There is some

evidence to suggest that the strength of a binding site correlates with its use in a

particular expression program. For example, it has been shown that medium or weak

affinity FOXA2 binding sites are associated with liver-specific expression [Tuteja et al.,

2008].

Cofactors

As well as binding competitively, TFs often bind synergistically [Hochschild and Ptashne,

1986]. TFs often bind to DNA as homodimers or heterodimers. For example, the TFs
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POU5F1 and SOX2 are known to regulate pluripotency in mouse embryonic stem cells

via synergistic binding [Loh et al., 2006]. POU5F1 binds to ATGCAAAT and SOX2 binds

to a neighbouring SOX element. In this instance POU5F1 and SOX2 are termed co-

factors. Weak binding sites can be relevant to synergistic binding as the presence of

cofactors can be enough to overcome lack of binding due to low-affinity sites.

Multiple binding modes

There are several examples of TFs that exhibit more than one mode of binding. The

TF ELK1 binds to high-affinity sites as a monomer. However, in the presence of the TF

SRF, ELK1 can bind to low-affinity sites [Treisman et al., 1992]. Tanay et al. showed

that REB1 has two distinct modes of binding associated with positive and negative auto-

regulation [Tanay et al., 2004a]. The TF Yin Yang 1 (YY1) is named after its ability

to act as an activator, repressor, or initiator of transcription. YY1 has been shown to

have distinct sequence preferences depending on whether it is acting as an activator or

repressor [Whitfield et al., 2012]. The biophysical reasons for these two modes could be

the presence of cofactors. Fordyce et al. have shown that the TF HAC1 binds DNA in

two distinct modes [Fordyce et al., 2012].

A common theme amongst the few known examples of TFs with multiple modes of

binding is that the modes are quite similar. That is, there is never too much divergence

in the sequence preferences between the modes. Typically there is some evidence to

suggest that the modes differentiate high-affinity sites from low-affinity sites.

Epigenetic effects

Accessibility to TFBSs can play a major role in patterns of TF binding. In eukaryotes

DNA is wrapped around nucleosomes which package it into a structure called chromatin.

Each nucleosome is an octamer of histone proteins. The positioning of the nucleosomes

relative to a TFBS can affect its availability for binding. Some TFs such as Swi/Snf are

known to affect how nucleosomes are positioned [Malik and Roeder, 2005], presumably

to dynamically alter binding patterns.

In addition to nucleosome positioning, each histone protein can be chemically mod-

ified in various ways, each of which can affect how it interacts with the DNA and

TFs [Kouzarides, 2007]. These modifications can be induced by TFs themselves, for

example a TF might recruit CREB-binding protein (CBP) which can acetylate lysine

amino acids on histone proteins. This acetylation can create binding sites for protein-

protein interaction domains [Mujtaba et al., 2007]. TFs that act to remodel chromatin
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are called pioneer TFs. There is increasing evidence that there is a combinatorial hi-

stone modification code [Wang et al., 2008]. This code partitions the genome on the

basis of the combinations of histone modifications that are present. Different types of

genomic regions have been found to be associated with particular combinations. For

example, enhancers and promoters can be distinguished on the basis of these marks

alone [Heintzman et al., 2007].

Deoxyribonuclease I (DNase I) is an endonuclease that cleaves DNA [Wu, 1980, Keene

et al., 1981, McArthur et al., 2001]. It has been shown that regions that are hyper-

sensitive to cleavage are associated with TF binding [Bernat et al., 2006, Hesselberth

et al., 2009]

In addition to chemical modifications of the histone proteins, chemical modifications of

the DNA itself can play a part in regulating TF binding. DNA methylation is such

a modification [Choy et al., 2010]. For example, the insulating TF CTCF is known

to have an enhancer blocking effect, that is, CTCF binding in between a gene and an

enhancer can prevent the enhancer from affecting transcription of the gene. Bell and

Felsenfeld showed that a particular CTCF TFBS is only occupied when the DNA is not

methylated and that this affects expression levels [Bell and Felsenfeld, 2000].

All of the above modifications that do not affect the sequence of bases are termed

epigenetic modifications despite evidence that they are heritable [Cavalli, 2002]. These

epigenetic effects are dynamic in that they usually vary across cell types [Heintzman

et al., 2009,Cui et al., 2009].

1.1.5 The combinatorics of transcriptional regulation

Particularly in higher organisms, combinatorial operations are often necessary for the

response of a cell to external stimuli or developmental programs. Such a response is

frequently implemented as a transcriptional switch where a combination of presence or

absence of certain TFs regulates the expression of a certain gene. Several well char-

acterised examples of the coordination of TFs are known. For instance, a set of well

studied TFs in Drosophila melanogaster that govern spatial patterns of development in

its embryo is described by Ingham [Ingham, 1988]; POU5F1, SOX2 and NANOG are

known to interact to maintain pluripotency [Chen et al., 2008]; higher eukaryotes are

known to use CRMs to integrate cellular signalling information [Arnosti and Kulkarni,

2005]; the development of the anterior pituitary gland is regulated by combinatorial ac-

tions of specific activating and restricting factors [Simmons et al., 1990] which determine

cell type.

Conversely, cellular processes often involve the coordinated expression of sets of genes.



8 1.1. THE BIOLOGY OF TRANSCRIPTIONAL REGULATION

Hence there is reason to suppose that not only do particular sets of TFs regulate partic-

ular genes but that these sets are also reused across the genome: that is, co-regulated

genes are often targets of the same TFs.

It is well known that the cell reuses overlapping sets of TFs as regulators at distinct

developmental stages and in different tissue types. For example, the TF Krüppel is

involved in the segmentation of the Drosophila embryo [Ingham, 1988] and is also im-

plicated in the development of the embryo’s central nervous system [Nakajima et al.,

2010]. In the segmentation system Krüppel is part of a program that includes the other

TFs giant, huckebein, hunchback, knirps and tailless. In the nervous system Krüppel

works alongside the TFs hunchback, pdm, castor and sevenup. Commonly models of

transcriptional regulation enforce mutual exclusivity on the sets of coordinated TFs.

The methods in this thesis do not enforce this unrealistic assumption.

Cis-regulatory grammars

When TFBSs cluster together there is the question of grammar: is a precise spatial

positioning of the TFBSs necessary for the correct interactions between the TFs to

occur? There are several models of TFBS clusters related to this question. At one end

of the scale is the enhanceosome model where the TFs are required to assemble on the

DNA in a particular order and positioning. At the other end of the scale is the billboard

model where the locations and orientations of the TFBSs are not important, it only

matters that they are present. Arnosti and Kulkarni developed these models in a review

paper [Arnosti and Kulkarni, 2005].

There are several known examples of enhanceosomes. The classical example of the

enhanceosome is the interferon-beta enhanceosome [Thanos and Maniatis, 1995,Agalioti

et al., 2000,Panne et al., 2007]. It has also become clear that the orientation of TFBSs

can be important, that is, which DNA strand the TF binds to. In the presumptive

neurogenic ectoderm of Drosophila TFBSs for the TFs twist and dorsal are required to

have a particular orientation [Papatsenko and Levine, 2007]. Regulation of Pax2 in the

Drosophila eye provides another example. There is an enhancer upstream of Pax2 that

contains 12 TFBSs for the TFs Lozenge, Su and Ets. When the arrangement of TFBSs

is altered, Pax2 is expressed in different cell types in the eye [Swanson et al., 2010].

That the arrangement of TFBSs can result in cell-type specific expression highlights the

importance of the enhanceosome model.

It is believed that many developmental enhancers follow the billboard model albeit

with a limited grammar [Levine, 2010]. Many such enhancers have been shown to be

functional under limited rearrangements of their TFBSs.
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Phylogenetic conservation

As discussed in Section 1.1.2 we can expect that TFBSs for homologous TFs in related

species will be conserved. Furthermore we can expect regions that contain functional

binding sites to show non-neutral rates of evolution [Moses et al., 2003]. However, there

are well established examples of turnover of TFBSs between closely related species. In

these cases evolution has destroyed and recreated the TFBSs necessary for regulatory

networks to function.

TFBS binding patterns are not always conserved between related species. Odom et al.

mapped the locations of four tissue-specific TFs in human and mouse hepatocytes [Odom

et al., 2007,Schmidt et al., 2010]. They showed that between 41% and 89% of these bind-

ing events were species specific. Tsong et al. analysed a regulatory network controlling

mating in a yeast lineage [Tsong et al., 2006]. They showed that although the outcome

of the circuit remains identical the mechanism via which the outcome was attained has

changed from using an activator to using a repressor. Borneman et al. showed that the

TFBSs for the yeast TFs Ste12 and Tec1 diverged more quickly than the genes they reg-

ulated [Borneman et al., 2007]. They argue that this suggests evolution uses turnover

of TFBSs as a niche specialisation mechanism. Kunarso et al. analysed the binding

locations of the TFs POU5F1, NANOG and CTCF in murine and human embryonic

stem cells [Kunarso et al., 2010]. They found that whilst CTCF binding sites were

largely conserved, transposable elements had rewired the regulatory network controlling

pluripotency and the TFBSs for POU5F1 and NANOG had diverged significantly. In

a similar study of adipogenesis, Mikkelsen et al. showed that there was a significant

turnover of TFBSs between human and mouse even when expression patterns were sim-

ilar [Mikkelsen et al., 2010]. In contrast to the preceding examples, He et al. showed

that the binding of the developmental TF twist is highly conserved across six Drosophila

species [He et al., 2011].

1.1.6 Uncertainty in transcriptional regulation

It is clear from the preceding discussion of the biology of transcriptional regulation that

there is much that we do not know about it. Modern high-throughput biological tech-

niques allow us to learn much about individual TFs and genes. Recently there has also

been a massive increase in the amount of data available about epigenetic effects. Both of

these data sources have been useful for decoding combinatorial effects in regulatory net-

works. However, most of the work on combinatorial regulation has been performed on a

few model systems. For example, the segmentation network in Drosophila melanogaster,

the regulation of pluripotency in humans and mice and muscle and liver development
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in humans have been particularly heavily studied. Many regulatory networks and many

aspects of combinatorial transcriptional regulation remain to be characterised.

1.2 Experimental techniques

The discovery that gene expression could be regulated by TFs binding to DNA initiated

an on-going effort in molecular biology to determine the binding preferences of these

proteins. Here I give an overview of some of these techniques.

The electrophoretic mobility shift assay (EMSA) can determine if a TF binds to a par-

ticular DNA sequence [Fried and Crothers, 1981, Garner and Revzin, 1981]. It relies

on the principle that a fragment of DNA will move more slowly through a gel when

it is bound by a TF. However, it cannot determine the location of the TFBS in the

DNA sequence so it is useful as a test for whether a TF binds to a particular promoter

or enhancer but not for learning the TF’s sequence preferences. DNase I footprinting

is a technique that allows the location of TFBS in a particular sequence to be deter-

mined [Galas and Schmitz, 1978,Dynan and Tjian, 1983,Brenowitz et al., 1986]. DNase

I footprinting relies on the fact the DNA bound by the TF is protected from cleavage

when digested by DNase I. Both EMSA and DNase I footprinting are in vitro techniques

and demonstrate that a TF can bind to a sequence outside the cellular environment.

The in vivo footprinting assay extends the DNase I footprinting technique to allow the

experimenter to determine if the TFBS is bound in vivo.

All the above techniques allow an experimenter to determine if a TF binds to one partic-

ular DNA sequence. To elucidate the sequence binding preferences of a TF, techniques

that examine the TF’s affinity for many sequences had to be developed. Systematic

evolution of ligands by exponential enrichment (SELEX) works by repeatedly selecting

sequences from a library of randomly generated sequences [Oliphant et al., 1989,Elling-

ton and Szostak, 1990, Tuerk and Gold, 1990]. The sequences are selected based on

their ability to bind the TF of interest. Yeast and bacterial one-hybrid systems are

based on transforming yeast or bacterial cells with a TF and some potential binding

sequences [Bulyk, 2005]. The cells are positively and negatively selected based on ex-

pression of reporter genes. Motif finding tools (see Section 1.4.5) can be used to derive

the sequence binding specificities of the TF from the selected sequences.

Protein-binding microarrays (PBMs) are a high-throughput in vitro technique that can

characterise the binding preferences of a TF [Mukherjee et al., 2004]. A typical config-

uration would place all 10-mer sequence variants on a microarray. A PBM experiment

quantifies a TF’s affinity for each of these 10-mers. PBMs do not reveal the locations

of TFBSs themselves and they require an antibody for the TF under investigation.
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Fordyce et al. have developed a micro-fluidic method mechanically induced trapping of

molecular interactions (MITOMI) to determine TF-DNA affinities [Fordyce et al., 2010].

Whilst PBMs can discover both strong and weak TFBSs, they do not measure TF-DNA

reactions at equilibrium as MITOMI does.

SELEX, the one-hybrid systems and PBMs are in vitro techniques. Recently high-

throughput in vivo techniques have been developed. ChIP-chip combines chromatin im-

munoprecipitation (ChIP) with microarrays (chip) to resolve TFBS locations to within

a few hundred base pairs [Blat and Kleckner, 1999, Aparicio et al., 2004, Buck and

Lieb, 2004, Liu and Meyer, 2009]. ChIP-chip can be expensive and in recent years

has been largely superseded by ChIP-seq. ChIP-seq combines chromatin immunopre-

cipitation with massively parallel DNA sequencing to achieve a similar effect [Johnson

et al., 2007, Robertson et al., 2007, Park, 2009]. ChIP-seq has the potential to more

accurately resolve TFBSs down to a few tens of base pairs [Jothi et al., 2008]. DNA

adenine methyltransferase identification (DamID) is a method that does not require an-

tibodies [van Steensel and Henikoff, 2000, Southall and Brand, 2007] for the TF under

investigation. DamID has a resolution of about 200 base pairs.

In vivo techniques are important as many potential TFBSs are only utilised in particular

tissues. Epigenetic modifications such as nucleosome positioning can render some parts

of the genome inaccessible to TFs, effectively shutting down entire regulatory systems.

The cell typically uses these modifications to achieve specific spatio-temporal expression

patterns. Analysis of sequences for TFBSs alone cannot reveal which regions are avail-

able for binding in which tissue types. In vivo experimental techniques can be applied

to particular tissue types at specific stages of development to determine the binding

patterns that occur in that specific context.

There is also a growing number of experimental techniques that can provide data on

epigenetic effects. FAIRE-seq [Giresi et al., 2007] can reveal which regions of a genome

are depleted of nucleosomes. This depletion is associated with regulatory activity in

any given cell sample independently of any given TF. ChIP-seq does not need to be

performed with a TF specific antibody, histone modifications can also be determined

via the appropriate antibodies. Methyl-seq is a technique to find methylated regions

of DNA [Brunner et al., 2009]. DNase-chip is a technique to determine which genomic

regions are hyper-sensitive to DNase I cleavage [Crawford et al., 2006].

1.3 Probabilistic models

Probabilistic models are a way of specifying a joint distribution over a set of random

variables [Jordan, 2004]. They are used across a wide range of scientific disciplines for
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a diverse set of tasks.

Probabilistic models have been used in state-of-the-art solutions for many problems.

Also many ad hoc state-of-the-art methods have been reinterpreted as the application

of standard inference techniques to particular probabilistic models. For example, the

interpolated Kneser-Ney method of smoothing n-gram language models was a state-of-

the-art method. Teh showed it to be equivalent to a particular form of approximate

inference in a non-parametric Bayesian hierarchical model [Teh, 2006]. By using this

model with a better inference technique Teh was able to improve performance.

1.3.1 Application

The application of probabilistic models requires three steps. Firstly, the model should

be specified. The specification defines the relationship between all the random variables

in the model. The relationships between the variables can be specified using one of

several graphical formalisms that make the assumptions in the model explicit.

Secondly, given the model, inference will be performed. In any particular model, some

of the variables will be observed and some will be latent (hidden). Inference produces a

posterior distribution over the latent variables. Probabilistic models have been found to

be a good fit for Bayesian inference techniques although they are not limited to them.

In general, inference will produce a posterior distribution over all the latent variables.

There are many different inference schemes to choose from. Some are designed for

specific models, some are designed for efficiency and others for accuracy. The recent

interest in machine learning techniques has resulted in a large literature of analysis of

the properties of these inference schemes.

Thirdly, when inference is finished and there is a posterior distribution over the latent

variables, it is used to solve the task under consideration.

1.3.2 Benefits

Probabilistic models have several advantages over ad hoc methods. Firstly the assump-

tions in the model are explicit. Conditional dependencies between the variables can be

read from a representation of the model in graphical form.

Secondly, when compromises between accuracy and efficiency in the inference are nec-

essary, the growing literature allows us to understand which ones might be acceptable.

Thirdly, uncertainty in the latent variables is quantified so we have a measure of confi-

dence in the results. This quantification follows the laws of probability. These laws have
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been shown to be the only reasonable way to reason in the face of uncertainty (see De

Finetti’s Dutch book arguments [De Finetti, 1937,De Finetti, 1964]). It is often useful

to propagate this uncertainty through to downstream tasks.

Fourthly, the separation of model definition and inference is useful in a practical manner.

The task of deciding on a suitable model or models is de-coupled from the task of

inference. An expert in the system to be studied can build one or more models. An

expert in inference can take these models and apply suitable inference techniques from

the large number available in the literature.

1.3.3 Mixture models

Mixture models are widely used and have proved extremely flexible in modelling a variety

of data. The methods in Chapters 3 and 4 use mixture models so I describe them here.

An example of a simple mixture model serves to introduce graphical plate notation for

probabilistic models.

A mixture model defines a distribution over a set of data, x1, . . . , xN , using latent

variables that assign each datum to a component. The number of components, K, is

typically but not necessarily fixed.

The archetypal example of a mixture model is a mixture of Gaussians and we use this

model to illustrate the idea. It is easiest to describe the model as a process that generates

the N data, x1, . . . , xN . Each datum, xn, has a latent variable associated with it, zn,

that identifies the component it is generated by. The zn are drawn at random from

{1, . . . , K}
zn ∼ Uniform(K) (1.1)

Now for each component k, where 1 ≤ k ≤ K the model has latent variables representing

the parameters of a Gaussian distribution: µk is the mean and the σ2
k is the variance. µk

and σ2
k are drawn from some prior distribution. A typical choice is an inverse Gamma

distribution

σ2
k ∼ inverse-Gamma(ν, σ2

0) (1.2)

and another Gaussian

µk ∼ N (µ0, λσ
2
k) (1.3)

where ν, σ2
0, µ0 and λ are hyper-parameters of the model. Now we generate the data xn

using the parameters of the component it belongs to, zn,

xn ∼ N (µzn , σ
2
zn) (1.4)



14 1.3. PROBABILISTIC MODELS

N

K

xnzn

µk σ2
k

λ
µ0 σ2

0
ν

Figure 1.2: Our mixture of Gaussians represented in graphical plate notation. The
plates represent multiplicities of variables. There are K copies of the µk and σ2

k nodes
and N copies of the xn and zn nodes. I use the convention that observed nodes are
shaded and latent (or hidden) nodes are left unshaded. The arrows represent conditional
dependencies in the joint distribution of the variables. Arrows that cross plates also have
that multiplicity. For example, this model represents KN dependencies between all N
xn and all K µk nodes but only one between any given pair of zn and xn nodes.

The dependencies between the variables in this model are easily seen using graphical

plate notation. In this notation variables inside a plate (or box) have multiple instanti-

ations. The plate is labelled with a number indicating how many instantiations of the

variable are in the model. For example, in our mixture of Gaussians model, there would

be a plate around the nodes labelled xn and zn and the plate would be labelled with N .

Similarly the two nodes representing µk and σ2
k would be surrounded by a plate labelled

with K. This is illustrated in Figure 1.2.

1.3.4 Likelihood functions and ratios

The likelihood function (or just likelihood) of a probabilistic model, L(θ;D), is a function

of the parameters of the model, θ. It is equivalent to the probability of the data, D,

given those parameters

L(θ;D) = p(D|θ) (1.5)

This equivalence means that the likelihood is simply an alternative view of the model,

one that is normally taken when considering a fixed set of data whilst varying the

parameters. Given two parameter values, θ1 and θ2, the likelihood ratio, LR, is the ratio

of the two likelihoods

LR =
L(θ1;D)

L(θ2;D)
=
p(D|θ1)

p(D|θ2)
(1.6)
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To avoid confusion it is worth noting that in classical statistics the test statistic, T , of

the likelihood-ratio test is twice the logarithm of the LR

T = 2[log p(D|θ1)− log p(D|θ2)] = 2 log LR (1.7)

When I use the term log-likelihood ratio in this thesis I always mean just the natural

logarithm of LR.

1.3.5 Bayes factors

Jeffreys introduced the Bayes factor [Jeffreys, 1935, Jeffreys, 1998, Kass and Raftery,

1995], K, as a statistic for comparing a hypothesis, H, to its alternative, H, given some

data, D. The Bayes factor is defined as

K =
p(D|H)

p(D|H)
(1.8)

and it measures the change in odds when moving from the prior odds to the posterior

odds [Lavine and Schervish, 1999]

p(H|D)

p(H|D)
=
p(D|H)

p(D|H)

p(H)

p(H)
= K

p(H)

p(H)
(1.9)

In this sense it can be interpreted as a measure of the evidence that the data, D, provide

for the hypothesis, H. It is worth noting that the relationship between the prior odds,

Bayes factor and posterior odds means that we can calculate any one of them given the

other two.

Of course our models often have hidden variables, H, (or parameters, θ) and in a

Bayesian framework we often integrate over these. In these cases we use the follow-

ing substitution for p(D|H)

p(D|H) =

∫
H

p(D,H|H) dH (1.10)

in the equations above.

In practice Bayes factors are often converted to the logarithmic scale for two reasons.

Firstly they are symmetrical in the hypotheses. That is, a log Bayes factor of logK in

favour of H is a log Bayes factor of − logK in favour of H. Secondly it is convenient that

log Bayes factors add rather than multiply for independent sets of data. This conversion

to the logarithmic scale is also typical for likelihood ratios.
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When several sets of data are available, D1, . . . , DN , we can calculate a Bayes factor,

K1, . . . , KN , for each set

Kn =
p(Dn|H)

p(Dn|H)
(1.11)

If the data sets are independent, that is, p(Dn|H) = p(Dn|H, Dn′) for all n 6= n′, we

can use the product of the individual Bayes factors to summarise the overall change in

odds, Kall, when observing all the data sets

Kall =
∏
n

Kn (1.12)

The situation is more complicated when the data are not independent. Hypothetically,

suppose we have the extreme case where the data are guaranteed to be equivalent,

Dn = Dn′ for all n and n′. Hence we also have Kn = Kn′ for all n and n′. This is total

dependence: knowing one datum allows us to predict the rest. If we know the data will

be equivalent before we observe them, we gain no more evidence by observing all the

data rather than just one. In this case the product of the Kn in Equation 1.12 would

over-estimate the evidence provided by the data. Taking the geometric mean

Kdep = N

√∏
n

Kn (1.13)

gives a Bayes factor Kdep = K1 as desired. Kall is theoretically justified and does indeed

behave as we expect in cases where the data are independent. I have no theoretical

justification for Kdep and it can only be seen as an ad hoc method of integrating the

evidence from dependent data. However, Kdep does have some of the attributes we desire

when integrating evidence from dependent data: it is symmetric in the Kn and it reduces

to Kall when N = 1. When the dependencies between the data are not known or are

hard to quantify, it is generally preferable to be cautious when integrating the evidence

available. In this context, Equation 1.13 is a suitable ad hoc approach to summarise the

overall change in odds given by dependent data.

1.3.6 Kullback-Leibler divergence

In Bayesian inference it is often necessary to compare how different two distributions

are. The Kullback-Leibler divergence (KL-divergence), KL(p||q), is such a measure of

separation between two probability distributions or densities, p(x) and q(x) [Kullback,

1959,Kullback and Leibler, 1951]. It is not symmetric and does not satisfy the triangle

inequality and therefore is not a metric. However, it does have the useful property that
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KL(p||q) = 0 if and only if p = q. In the discrete case, KL-divergence is defined as

KL(p||q) =
∑
x

p(x) log
p(x)

q(x)

and in the continuous case

KL(p||q) =

∫
x

p(x) log
p(x)

q(x)
dx

Notationally perhaps it is simplest to regard it as the expectation of the log-likelihood

ratio

KL(p||q) =
〈

log
p(x)

q(x)

〉
p

The KL-divergence is also known as the relative entropy.

The KL-divergence has an interpretation as the divergence of a prior from the truth.

Suppose x is a random variable distributed as p(x). Alan knows the distribution p but

Brian does not, he believes x is distributed as q(x). KL(p||q) is the expected difference

between Brian’s surprisal and Alan’s surprisal when the value of x is observed.

1.3.7 Expectation maximisation algorithm

The Expectation-Maximisation (EM) algorithm attempts to find the maximum likeli-

hood estimate (MLE) of the parameters of a probabilistic model [Dempster et al., 1977].

It has two steps, the Expectation step (E-step) and Maximisation step (M-step), that are

repeated until convergence of the expected value of the likelihood to a local maximum.

More exactly, suppose we have a model p(D,H|θ) that defines a joint distribution over

some observed data, D, and some unobserved data, H, given some parameters, θ. We

wish to find the parameters, θ̂, that maximise the expected value of the marginal like-

lihood of the observed data, 〈p(D|θ̂)〉p(H|D,θ̂), under the posterior distribution of the

hidden variables given our estimate θ̂, p(H|D, θ̂).

We start with any estimate of the parameters, θ0. The E-step calculates the expected

value of the marginal log-likelihood as a function of θ given our current estimate, θt,

Q(θ|θt) = 〈p(D|θ)〉p(H|D,θt) (1.14)

The M-step updates our estimate, θt, by maximising Q

θt+1 = arg max
θ

Q(θ|θt) (1.15)
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Q is bounded and the updates always increase Q so we are guaranteed to find a local

maximum. Depending on the model, the EM algorithm can be sensitive to the initial

estimate of the parameters. This is a particular problem with a multi-modal likelihood.

1.3.8 Variational inference

Variational inference is a Bayesian inference technique that approximates the posterior

distribution over the hidden variables in a probabilistic model [Hinton and van Camp,

1993,Jaakkola, 1997,Jordan et al., 1999,Neal and Hinton, 1998,Winn, 2003]. Variational

inference is used in instances where the full posterior of the model, p(H|D) is intractable.

A variational distribution, q(H), is used to approximate the true posterior

q(H) ≈ p(H|D) (1.16)

Variational inference is the minimisation of the distance between q(H) and p(H|D). Any

distance measure can be used however in practice the KL-divergence often simplifies the

inference task.

Following the exposition in Winn’s Ph.D. thesis [Winn, 2003] we show how using the

KL-divergence simplifies the variational update equations. We want to minimise

KL(q||p) =

∫
H

q(H) log
q(H)

p(H|D)
dH =

〈
log

q(H)

p(H|D)

〉
q(H)

(1.17)

however we do not know p(H|D) so we cannot do this directly. Making the substitution

p(H|D) = p(D,H)
p(D)

we have

KL(q||p) =

〈
log

q(H)p(D)

p(D,H)

〉
q(H)

=
〈

log q(H)
〉
q(H)

+ log p(D)−
〈

log p(D,H)
〉
q(H)

= log p(D)−
[
H(q) +

〈
log p(D,H)

〉
q(H)

]
(1.18)

where H(q) = −〈log q(H)〉q(H) is the entropy of q. As log p(D) does not depend on q(H)

our task is to choose q(H) such that H(q) +
〈

log p(D,H)
〉
q(H)

is maximised and hence

KL(q||p) is minimised. Following Winn we define L(q) to be the term to be maximised

L(q) = H(q) +
〈

log p(D,H)
〉
q(H)

(1.19)

We can choose q(H) to be of any form. Typically we will choose a factorised distri-
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bution as this makes inference more straightforward. In general H is a collection of

random variables, H = {H1, . . . , HN}. A factorised distribution for q will be of the form

q(H) =
∏

n qn(Hn). We can maximise L(q) iteratively by updating each of the qn(Hn)

consecutively. When we are considering the update for qn(Hn), we factorise q(H) into

two distributions, q(H) = qn(Hn)q¬n(H¬n), where we define q¬n(H¬n) =
∏

n′ 6=n qn′(Hn′)

to be the factorised distribution over all the Hn′ except Hn. Due to the factorised nature

of q(H) we can take our expectations in any order, that is, 〈.〉q = 〈〈.〉q¬n〉qn . Using this

factorisation with Equation 1.19 and ignoring terms that do not depend on qn(Hn) gives

L(q) = H(q) +
〈

log p(D,H)
〉
q

=
∑
n′

H(qn′) +
〈〈

log p(D,H)
〉
q¬n

〉
qn

= H(qn) +
〈〈

log p(D,H)
〉
q¬n

〉
qn

+ constant

= −KL(qn||〈log p(D,H)〉q¬n) + constant (1.20)

If we define the updated distribution q∗n(Hn) by

log q∗n = 〈log p(D,H)〉q¬n − logZ (1.21)

where Z is the constant that makes q∗n a proper distribution then we know that this will

minimise the KL-divergence in Equation 1.20 (it will be 0). So we can maximise L(q)

with respect to qn by updating using Equation 1.21.

Each iteration of variational inference consists of applying the updates for each qn con-

secutively. Each update will increase L(q) which we know to be bounded. We continue

iterating until the rate of increase falls below some pre-defined small threshold. When

this happens we should be close to a local maxima of L(q) and we can expect our

variational distribution, q(H), to be close to a mode of the posterior, p(H|D).

The updates for the form of variational inference given above are very similar to those

for the EM algorithm. In fact, the EM algorithm can be seen as a special case of

variational inference. If HEM are the hidden variables in our model and θ = θ1, . . . , θK

are the model parameters then from our variational inference point of view these are all

hidden variables giving Hvar = {HEM, θ}. If we use a factorised variational distribution,

q(Hvar) = q(HEM)
∏

k qk(θk), where each qk(θk) is restricted to being of the form of a

point estimate then variational inference and the EM algorithm are equivalent.
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1.3.9 Hypothesis testing

In this section I define some terms commonly used in statistical hypothesis testing that

I will use later on. The null hypothesis typically describes a default position. The

alternative hypothesis typically describes an effect conjectured to be present. A p-value

is the probability of observing a test statistic at least as extreme as the test statistic

generated by the data if the null hypothesis is true. The E-value is often used when

multiple tests are involved. The E-value is the expected number of times a test statistic

as extreme as the one generated by the data would be observed assuming the null

hypothesis is true. The E-value is the number of tests multiplied by the p-value of the

most extreme statistic.

1.3.10 Classification

In this section I introduce some statistics and graphics that are commonly used to

compare classification and prediction methods. Suppose we have a binary classifier that

predicts if some data possess some property. For example, we may have a classifier that

predicts if putative TFBSs are bound in vivo by a TF. When the classifier predicts the

property is present, the prediction is called a positive prediction; conversely a negative

prediction is made when the classifier predicts the property is absent. A true prediction

is one that the classifier gets correct; conversely a false prediction is one the classifier

gets wrong. In this way, if the predicted and correct classifications are known then

every prediction is either a true positive (TP), false positive (FP), true negative (TN),

or false negative (FN). The false positive rate (FPR) of the classifier is the ratio of

false positive predictions made by the classifier to the potential false positives (in other

words the number of negatives), FPR = FP
FP+TN

. Similarly the true positive rate (TPR)

is defined as the ratio of the true positive predictions to the potential true positives

(the number of positives), TPR = TP
TP+FN

. Some authors use sensitivity and specificity

instead of TPR and FPR. The sensitivity is the same as the TPR and the specificity

is defined as 1 − FPR = TN
FP+TN

. The false discovery rate (FDR) measures how many

positive predictions were incorrect. It is the ratio of false positive to positive predictions,

FDR = FP
TP+FP

.

A binary classifier often works by thresholding a score associated with each datum. All

those data that score above the threshold are predicted as positives and the remainder

are predicted as negatives. Each threshold in the range of the scores defines such a clas-

sifier. When the threshold is set low the classifier always predicts positively; conversely a

high threshold makes every prediction a negative. Between these extremes there will be

a range of classifiers that represent a compromise between the number of FPs and FNs.
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The performance of such a method can be investigated by examining this compromise

graphically and statistically.

Graphically, this is typically achieved through plotting a receiver operating characteristic

(ROC) curve. The ROC curve is a plot of the FPR against the TPR of the classifiers

as the threshold varies. A perfect classifier has a ROC curve that passes through (0,0),

(0,1) and (1,1). A ROC curve that is a line from (0,0) to (1,1) represents a method that

classifies randomly. Two example ROC curves are plotted in Figure 1.3.

Note that a ROC curve represents a traversal of the data sorted by their score. As

we move along the curve we are including more data at successively lower scores. An

ambiguity arises when the method scores positive and negative data equally: should the

positive or negative examples at this threshold be considered earlier on the ROC curve?

There are three solutions to this ambiguity. Optimistically and unreasonably we can

suppose that the method is better at predicting TPs than FPs. Agnostically we could

suppose positive and negative data are treated equally. Pessimistically and cautiously

we can place the negative data earlier on the curve. In this thesis, I choose the latter

option following the example of [H̊andstad et al., 2011].

Statistically, a method’s performance can be measured by its area under curve (AUC)

statistic. This statistic is defined as the area under the ROC curve. A perfect method

will have an AUC statistic of 1 and a random method will have an AUC statistic of .5.

An AUC statistic can be interpreted as the probability that a randomly chosen positive

datum will be scored more highly than a randomly chosen negative example.

Sometimes we are not interested in the performance of a method over its entire range

of thresholds. We are often interested in how the method performs at higher thresholds

on the data for which it is more confident are positive. In this case statistics such as

the AUC50 are commonly used [H̊andstad et al., 2011]. The AUC50 is defined as the

area under the ROC curve bounded by the FPR corresponding to having predicted 50

FPs. This is the region of the ROC curve that evaluates the most confident predictions.

However the AUC50 statistic does have some shortcomings. Firstly it is sensitive to

the number of data. Imagine two data sets, one contains two copies of each datum

contained in the other. Any given method will have the same AUC on both data sets

(if tied scores are handled appropriately). However, in general the AUC50s for the same

method on the two data sets will vary by a factor of the order of two. Secondly 50 is

a somewhat arbitrary choice. It is motivated by the idea that an experimenter might

find no more than 50 FPs acceptable. However, for modern high-throughput data sets

this represents a tiny FPR. I present a similar statistic to the AUC50 that is defined by

a FPR threshold instead of a count of FPs later in this thesis. This statistic does not

have these two shortcomings.
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Figure 1.3: ROC curves for two fictional classification methods on simulated data. The
AUC statistic for each method is the area under the whole curve. The AUC50 statistic
is the area under the curve that corresponds to the first 50 FPs and is shaded in the
plot. There were 700 negative data in the simulation so this area is bounded by a FPR
of 50

700
. Method 1 has an AUC of 0.761 and an AUC50 of 0.013. Method 2 is better at

low sensitivities and worse at high sensitivities. By chance method 2 has the same AUC
statistic of 0.761. However method 2 has an AUC50 statistic of 0.03 which demonstrates
superior performance at higher thresholds. The expected performance of a classification
method based on random scores is shown as the dotted line (AUC=.5).
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1.4 Models of transcriptional regulation

1.4.1 Motivation

Why do we model transcriptional regulation? Models have at least three useful aspects:

they let us test how well data fit different hypotheses; they can help reduce the com-

plexity of the system we are investigating and they allow us to predict behaviour in

systems for which we do not have data. For the first aspect we can construct a model

that encapsulates our hypothesis. The fit of the model to the data can be used as a

proxy for our belief in the hypothesis. The second aspect is useful when models provide

a summary or high-level view of complex systems by hiding or ignoring largely irrelevant

low-level details. The third aspect is useful when we wish to extrapolate from what we

know about a particular system to other related systems.

As well as being useful, computational models are necessary. We are compelled to use

them due to the sheer volume of data generated by modern biological techniques. It

is no longer possible to analyse these data by hand. For instance, a typical ChIP-seq

experiment might report that a TF binds to regions spanning 10Mb of the genome. No

biologist can inspect all these regions manually. To use these data effectively we need

to build models with which we can infer the interaction between the TF and the DNA.

In this thesis we focus on models of the sequence preferences of TFs and on models of

cooperative effects between TFs.

1.4.2 Representations of binding sites

As described above, the sequences at TFBSs for a particular TF often exhibit signif-

icant variability. Models that characterise these TFBSs have to incorporate this vari-

ability [Stormo, 2000]. Knowledge of these preferences is useful in many ways. In the

first place, it allows prediction of TFBSs from sequence data alone. These predictions

can provide biologists with novel candidate genes that may be regulated by the TFs

in the network they are studying. Conversely a biologist can scan CRMs in a network

for instances of TFBSs not known to be associated with that network. In this way

putative new TFs in the regulatory network are predicted. TFBS predictions can be

used with other sequence based data such as single nucleotide polymorphisms (SNPs)

to help discover the mechanisms by which genetic variants cause observed phenotypes.

Homologous TFs in closely related species often have similar protein structures and

share similar binding preferences. Knowledge of the binding preferences of a TF in one

species can be applied across a clade or even greater evolutionary distances. In addi-
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IUPAC code Base
A adenine
C cytosine
G guanine
T thymine
R A or G
Y C or T
S G or C
W A or T
K G or T
M A or C
B C or G or T
D A or G or T
H A or C or T
V A or C or G
N any base

Table 1.1: The IUPAC code that incorporates ambiguity over bases.

tion, understanding the exact locations of TFBSs can help us understand combinatorial

transcriptional regulation [Reid et al., 2009].

Consensus sequences

The most basic models of TF binding sequence preferences are consensus sequences. In

their simplest form they describe the sequence that the TF is most likely to bind. The

likelihood of the TF binding to alternate sequences is normally quantified by the number

of mismatches to the consensus sequence.

Consensus sequences can be used with an alphabet representing the four DNA bases, A,

C, G and T. They can also be used with an expanded alphabet which explicitly represents

ambiguity in which base is preferred at each position. Typically the IUPAC alphabet

is used (see Table 1.1). For example, the consensus sequence of TBP is TATAAAA in

the DNA alphabet but variability in the TFBSs can be represented by the consensus

sequence TATAWAW in the IUPAC alphabet. W represents A or T.

Position weight matrices

A position weight matrix (PWM) parameterises a probability distribution over words

of a given length, say W . It is worth noting that some authors use the term PWM to

refer to a scoring matrix (discussed in Section 2.1). PWMs are the archetypal method
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for modelling the sequence-specific binding preferences of TFs. The distribution at each

position is modelled as a discrete distribution over the four possible bases. PWMs treat

each position in the TFBSs independently. That is, the base that occurs at position w1

in a TFBS has no bearing on the base occurring at position w2 if w1 6= w2. When PWMs

are used to model TF-DNA interactions this independence is equivalent to assuming that

the binding energy of the TF-DNA contributes additively across positions.

A PWM is a probabilistic model and is parameterised by W discrete distributions,

θ = {θ1, . . . , θW}, over the four possible bases at each of its W positions. θwb is the

probability of observing base b at position w in a TFBS. Out of all the models that

assume position independence, PWMs are the most general. Consensus sequences can be

seen as special cases of PWMs. PWMs exactly quantify the probability of the preferred

base at each position and how unlikely any specific deviation is. The PWM models a

W-mer, X = x1 . . . xW as

p(X|θ) =
W∏
w=1

θwxw (1.22)

PWMs have been shown to be more sensitive than consensus sequences when used to

predict translational initiation sites [Stormo et al., 1982].

The information content of a PWM is a measure of how specific the TF’s binding

preferences are. There is more than one definition of the information content. I use the

version where the information content, IC, is taken to be the KL-divergence between

the PWM’s distribution and a 0-order genomic background distribution, φ,

IC = KL(θ||φ) =
∑
w

∑
b∈{A,C,G,T}

θwb log
θwb
φb

(1.23)

This version is well founded and well established [Stormo, 1998]. The main alternative

is due to Schneider and is equivalent when the genomic background distribution is

uniform [Schneider, 1997].

PWMs are most often represented graphically by sequence logos [Schneider and Stephens,

1990]. The height of the sequence logo at each position gives a measure of the conser-

vation at that position and the distribution over the four possible bases is represented

by their relative heights. See Figure 1.4 for an example.

PWMs are motivated biophysically: Berg and von Hippel showed that the binding

energy of the TF-DNA interaction is proportional to the logarithm of the frequencies

of the bases [Berg and von Hippel, 1987]. Their analysis only applies to genomes with

a uniform base composition but in practice the base compositions of most genomes are

relatively close to uniform.
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TTACTCGTCCAGTGCAA
Figure 1.4: A sequence logo for the TF Stat5. We can see the consensus sequence is
TTCCCGGAA by reading the bases on top at each position. The bases at each position are
ordered top-down by their frequencies. The height of the logo at each position represents
its information content, a measure of its conservation, which is measured in bits. The
relative height of each base at each position represents their frequencies.

To give a feel for the molecular mechanics of TF-DNA binding I show an example with

its associated sequence logo in Figure 1.5.

Only a relatively small fraction of TFs have had their sequence preferences characterised.

For instance there are PWMs for a few hundred human TFs out of an estimated several

thousand. The databases TRANSFAC [Matys et al., 2003], JASPAR [Sandelin, 2004,

Portales-Casamar et al., 2009] and UniPROBE [Newburger and Bulyk, 2009] hold the

most widely used collections of PWMs. The PWMs in these databases are mainly

for TFs from Homo sapiens and such model organisms as Saccharomyces cerevisiae,

Drosophila melanogaster and Mus musculus. JASPAR and UniPROBE are open-access

databases, TRANSFAC has a commercial license.

Given a set of PWMs that represent the binding preferences of TFs under study, an

investigator can scan genomic regions for matches to the binding preferences. There are

several problems with this approach: the regions in which regulatory TFBSs are located

are not normally known in advance; due to the size of the genome, algorithms that find

putative binding sites are known to generate many false positives; and, unfortunately,

JASPAR and TRANSFAC do not contain PWMs for all TFs of interest.

More complex models of TF specificity

The independence assumption inherent in PWMs has been shown to be realistic in some

cases [Sarai and Takeda, 1989,Takeda et al., 1989,Desjarlais and Berg, 1994,Lustig and

Jernigan, 1995] but there is evidence to suggest that it is not always justified [Man and

Stormo, 2001,Bulyk et al., 2002]. Some models have been proposed for position interde-

pendencies [Zhou and Liu, 2004,Barash et al., 2005,Ben-Gal et al., 2005,Naughton et al.,

2006,Sharon et al., 2008]. On the other hand, it has been shown that the independence

assumption is a close approximation for some cases where interdependencies exist [Benos

et al., 2002,Man et al., 2004]. The advent of PBMs provided more data relevant to this
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ongoing discussion. Badis et al. use it to argue that many TFs have multiple modes

of binding [Badis et al., 2009]. Zhao and Stormo have argued that simple models are

sufficient for most TFs [Zhao and Stormo, 2011]. For the time being the PWM remains

the model of choice for TFBSs.

Several approaches model the idea of multiple modes of TF binding (Section 1.1.4).

Hannenhalli and Wang use a mixture model approach [Hannenhalli and Wang, 2005].

Georgi and Schliep adapt this approach by allowing the model to share distributions

at positions in the TFBS that do not vary across the mixture components [Georgi and

Schliep, 2006]. Bais et al. present an approach that looks at spaced dyads [Bais et al.,

2011]. One half of the dyad may have several modes depending on its cofactor.

The notion that TFBSs can vary in length has been relatively under-explored. In a

publication outside of this thesis my coauthors and I examined some ChIP data for

evidence of gapped motifs [Reid et al., 2010].

As mentioned in the discussion above on weak binding sites (Section 1.1.4), TFs belong

to structural families. Sandelin and Wasserman were the first to model these families

with familial binding profiles [Sandelin and Wasserman, 2004]. Piipari et al. have also

developed a model for the binding preferences of TF families [Piipari et al., 2010]. We

note that their metamotif model could also be used to model multiple modes of binding

by the same TF.

1.4.3 Modelling genomic sequences

The genomic sequences of many species are known to contain dependencies between

nearby base pairs [Chor et al., 2009, Zhou et al., 2008]. One of the most prevalent

examples of this are CpG islands. CpG islands are regions of the genome with higher

than expected CG dinucleotide content. Other regions of the genome are subject to CpG

suppression where they have lower than expected CG dinucleotide content. CpG islands

have been implicated in the determination of chromatin structure [Thomson et al., 2010]

and may have an important role in transcriptional regulation.

Most algorithms for sequence analysis make the simplifying assumption that the genome

can be modelled as a 0-order Markov model ignoring any higher order dependencies.

Whilst this is a practical choice for many applications, several authors claim more com-

plex background models improve their methods [Thijs et al., 2001,Aerts et al., 2003,Tu-

ratsinze et al., 2008, Thomas-Chollier et al., 2011]. In this thesis I will concentrate on

0-order Markov models but I will try to point out where more complex models could

be applicable. More complex models are not restricted to higher order Markov models.
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Hidden state space models such as hidden Markov models provide natural models of the

mosaic structure present in many genomes [Down, 2005].

1.4.4 Associating regulatory regions with genes

Discovering evidence that a TF binds to the genome through sequence analysis or ex-

perimentation does not normally reveal which gene(s) it regulates. Models of transcrip-

tional regulation commonly assume that CRMs regulate the expression of the closest

gene. This may be a typical scenario but it is well known that CRMs can act over great

distances and across chromosomes (see Section 1.1.4).

1.4.5 Algorithms to learn binding site representations

Modern high-throughput experimental methods such as ChIP-seq, ChIP-chip and DamID

are able to pinpoint regions in the genome where particular TFs bind in vivo. However,

the resolution of these techniques is still an order of magnitude or two larger than a

typical TFBS [Gilchrist et al., 2009]. There remains a need to determine the binding

sequence preferences of TFs and hence the exact locations of TFBSs from these data

sets. This task of inferring the sequence preferences of a TF from such a set of regions

is termed motif finding.

A typical high-throughput experiment might generate a data set of thousands of se-

quence fragments. Each fragment could be hundreds of base pairs long. The sequence

preferences of a TF are relatively short, typically eight to twelve base pairs. Mis-

matches to the preferred bases are common in TFBSs. Determining these sequence

preferences from the few binding sites in the fragments is a difficult problem. However,

much effort has been dedicated to this motif finding problem and many algorithms and

softwares exist for this purpose. The area has been reviewed several times [Hu et al.,

2005, D’haeseleer, 2006a, MacIsaac and Fraenkel, 2006, Das and Dai, 2007, H̊andstad

et al., 2011].

Most motif finders can be broadly categorised as either combinatorial or probabilistic.

Combinatorial motif finders search for consensus sequences. TFBSs are predicted on

the basis of the number of mismatches with these consensus sequences. Probabilistic

motif finders typically infer PWMs. Most of the probabilistic motif finders use either the

expectation-maximisation (EM) algorithm [Dempster et al., 1977,D’haeseleer, 2006b] or

a Gibbs sampling algorithm [Geman and Geman, 1984] for inference. Examples of motif

finders that use the EM algorithm include [Lawrence and Reilly, 1990, Bailey et al.,
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1994, Blekas et al., 2003, Moses et al., 2004a, Prakash et al., 2004, Sinha et al., 2004, Qi

et al., 2005,MacIsaac and Fraenkel, 2006,Li, 2009].

The volume of available TF binding location data is rapidly increasing. Both the number

and the size of data sets generated by techniques such as ChIP-chip, ChIP-seq, and

DamID continue to grow. Unfortunately the run-time of most motif finders is at least

linear in the size of the data. In our experience most motif finders are far too slow

for such large data sets of sequences. Whilst it may be possible to let the motif finder

run for several days, invariably the user would like to fine-tune parameters. This may

involve several runs which makes motif finding impractical.

1.5 The rest of this thesis

The main contributions of this thesis are presented in the next three chapters.

Chapter 2 introduces a novel algorithm to scan DNA sequences for TFBSs. The algo-

rithm incorporates phylogenetic information using an averaging of evidence technique.

The core of the algorithm models billboard enhancers. In the maximal chain extension

to the core algorithm, conservation of the order of TFBSs across species is explicitly

modelled without the need for a multiple alignment of the sequences under considera-

tion. This extension models enhanceosomes. A small example is given where the core

algorithm was used to investigate a regulatory network in the mouse embryo. An em-

pirical evaluation of the strengths and weaknesses of the core algorithm relative to three

other comparable methods is presented.

Chapter 3 presents a novel and efficient approximation to one of the most popular motif

finders, MEME. This approximation makes the application of the MEME algorithm

possible to the large data sets generated by modern high-throughput experiments. The

approximation is based on suffix trees which have been used in combinatorial motif find-

ers. It is to the best of my knowledge the first application of suffix trees to probabilistic

motif finders. Theoretical and empirical analyses of the approximation’s properties are

given.

Chapter 4 presents an application of a non-parametric hierarchical Bayesian model com-

monly used in document-topic modelling to model combinatorial effects in transcrip-

tional regulation. The model discovers several well characterised sets of interacting TFs

in an unsupervised fashion. The model also discovers some hitherto uncharacterised

interactions.

Chapter 5 is a discussion chapter. It summarises the contributions made by the pre-

ceding three chapters. Some arguments are presented in favour of probabilistic models.
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Possible ways to combine the application of the novel methods presented in the thesis

are discussed. Types of data that might be used for this integration are identified. Some

possible avenues for future research are presented.
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Figure 1.5: The catabolite activator protein (CAP) exists as a homodimer. It binds
DNA with two DNA recognition helices which insert into consecutive turns of the DNA’s
major groove. Top: A molecular model of the structure of a CAP homodimer binding to
DNA. The model was generated by the 3D-DART web server [Dominguez et al., 2003].
Bottom: A sequence logo representing 58 binding sites for the CAP homodimer [Robison
et al., 1998]. Notice the two halves of the PWM, each one represents the binding
preferences of one of the helices. They are spaced 11 base pairs apart, consistent with
the distance between consecutive turns of the DNA’s major groove. The two halves are
approximate reverse complements of each other, reflecting the orientation of the helices
in the homodimer.
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Chapter 2

Predicting binding sites

Once we have characterised the binding preferences of a TF, a natural question to ask is:

can we predict where in a DNA sequence the TF binds? This prediction task is called

PWM scanning or motif scanning. Several prediction approaches have been developed.

2.1 Sequence based predictions

The simplest prediction methods require no more data than the sequence itself and of

course the binding preferences of the TFs. There are a number of methods that tackle

this problem from various angles. Here we summarise the most popular methodology.

Later we will describe specific methods and how they relate to this basic framework.

In the basic framework each position in the TFBS is treated independently. This is

equivalent to the assumption that the binding energies are additive across the positions.

In this formulation the binding preferences are summarised by a position specific scoring

matrix (PSSM) , ψ. A PSSM is similar to a PWM but the values at each entry represent

the score given to that base at that position in the TFBS rather than the frequency with

which that base occurs. The total score, Sψ(x), for the putative TFBS, x = x1 . . . xW ,

is the sum of these scores.

Sψ(x) =
W∑
w=1

ψw,xw (2.1)

Some methods normalise the score

S ′ψ(x) =
Sψ(x)− Smin

ψ

Smax
ψ − Smin

ψ

(2.2)

where

Smax
ψ = arg max

x
Sψ(x) and Smin

ψ = arg min
x

Sψ(x)

33
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so that S ′ ∈ [0, 1].

A few methods stop here and report the score, S or S ′, however most calculate a p-value.

The p-value summarises the chances of observing such a score, S, by chance. It is based

on the distribution of the score, S, under some background genomic distribution. The

background distribution is almost always taken to be a 0-order Markov model as this

greatly simplifies the calculation of the p-values.

For many TFBS prediction tasks a binary output is required thus the score or p-value

is thresholded. The threshold used may be PWM specific. PWM-specific thresholds

are necessary if the score has been normalised. To see why, imagine two TFBSs, the

first perfectly matches the very vague sequence preferences of one TF, the second TFBS

perfectly matches the highly specific sequence preferences of another TF. Clearly the

second TFBS is a much stronger candidate but they both score 1 under any normalised

scoring scheme.

Popular p-value based prediction algorithms include FIMO [Grant et al., 2011], patser

(implemented by Gerald Hertz, no reference available but can be downloaded from

http://stormo.wustl.edu/resources.html) and matrix-scan-quick [Thomas-Chollier

et al., 2011].

2.1.1 Pseudocounts

Most methods add pseudocounts to the PWMs before use. This ensures there are no

forbidden bases and also makes sure PWMs built from an alignment of just a few sites

are not overly confident. There has been some disagreement about the best value to

use. Early authors used small values around 0.01. Later authors have used larger values

of 0.25 or 1. Nishida et al. have made a study of the effect of pseudocounts on PWMs

and predicting TFBSs [Nishida et al., 2008]. They recommend using a pseudocount of

0.8 in practice.

2.1.2 Log-likelihood scoring functions

The most prevalent scoring function is the log-likelihood ratio. To the best of my

knowledge, the first example of its use is MATRIX SEARCH [Chen et al., 1995]. The

log-likelihood ratio is the difference between the log-likelihood of the TFBS given the

frequencies in the PWM and the background model. More exactly, suppose we have a

PWM, θ, representing the frequencies of the bases in the binding sites and a 0-order

Markov background model, φ. So θw,b is the probability of observing base b at position
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w in a binding site and φb is the probability of observing base b in the genome. Our

PSSM, ψ, is defined as

ψw,b = log
θw,b
φb

(2.3)

Here our score Sψ(x) =
∑W

w=1 ψw,xw is the log-likelihood ratio.

The concept behind the likelihood ratio approach is clear: the two likelihoods are com-

pared and the evidence in favour of one model over the other is the score. More generally

treating the TFBS as a whole we can consider the log likelihood ratio of the PWM model

to a background model of a higher order, Then the score, SLL, is given by

SLL = log
p(x|θ)
p(x|φ)

(2.4)

where p(x|θ) is the probability of x under the PWM model parameterised by θ and

p(x|φ) is the probability of x under the background model parameterised by φ. When

p(x|φ) is a 0-order model this reduces to the case above (Equation 2.3). As mentioned

in Section 1.4.3 most genomes do not fit a 0-order model well. This ability to intro-

duce more complex background models is an appealing aspect of this scoring method.

These background models can include context-sensitive effects, for example whether the

sequence is inside a CpG island. Neither does the model have to be a Markov model,

any model can be used.

The log-likelihood ratio also has a pleasing biophysical interpretation. Berg and von

Hippel used statistical mechanics theory to show that the log-likelihood ratio is pro-

portional to the binding energy of the TF-DNA interaction under a set of simplifying

assumptions [Berg and von Hippel, 1987]. The assumptions are that the background

composition of the genome is uniform, that is that each base has an equal a priori prob-

ability and that the positions in the sequence contribute independently to the binding

energy.

Stormo and Fields developed a separate justification for using the log-likelihood ratio

as a measure of binding energy [Stormo and Fields, 1998]. Their justification applies

to non-uniform genomes that are well represented by 0-order Markov models. Their

starting point is a set of high-affinity sites for which the binding energies are unknown.

Again assuming the positions contribute independently they show that the log-likelihood

ratio is a maximum likelihood estimate of the binding energy between the TF and the

sequence.
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Posterior probability of binding

In a Bayesian framework we can treat the log-likelihood score, SLL, as a log Bayes factor

and estimate the probability that x is a TFBS. Denoting the event that x is a TFBS

by B we have by Bayes’ theorem

p(B|x) =
p(x|B)p(B)

p(x)
(2.5)

and

p(B|x) =
p(x|B)p(B)

p(x)
(2.6)

where B is the event that x is not a TFBS. Dividing the two preceding equations to

remove p(x) and relating this to Equation 2.4 by p(x|B) = p(x|θ) (the likelihood of x

under the PWM model) and p(x|B) = p(x|φ) (the likelihood of x under the genomic

background model) we have
p(B|x)

p(B|x)
=
p(B)

p(B)
eSLL (2.7)

As B and B are mutually exclusive we have p(B) = 1− p(B) and p(B|x) = 1− p(B|x).

Defining T = p(B)
1−p(B)

eSLL we have

p(B|x) =
T

1 + T
(2.8)

This is the posterior probability that x is a binding site under this model. It depends on

SLL and a prior, p(B), that can be specified by the user of the method. This probabilistic

approach is not as popular as using p-values although some recent methods do use it,

for example MotEvo [Arnold et al., 2012]. Later I will develop this idea further.

A typical PWM scanning task might use hundreds of PWMs and sequences of hundreds

of base pairs upwards. Just scanning 100 putative TFBSs with 100 PWMs will result

in 10,000 tests. We are normally interested in ranking the putative TFBSs according to

how strong our belief is that they are real TFBSs. Hence some method to compare the

results of each test across different PWMs is generally required. p-value based scoring

approaches use a threshold to decide which putative TFBSs are rejected as binding

sites. This is a binary decision and whilst the p-value provides some measure of how

strong the evidence, it is not clear that a direct comparison of p-values generated by

different PWMs is justifiable. In contrast, this Bayesian framework gives us a posterior

probability that the putative TFBS is actually a TFBS. Under the assumptions of the

model, the posterior probabilities are comparable and we can use them to determine

which TFBSs are stronger candidates. Additionally, whilst we can use a threshold with
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p-value methods to make binary predictions, it is harder to carry forward any uncertainty

about these predictions to later stages of an analysis. Quantification of the uncertainty

about the predictions is a natural consequence of the Bayesian approach as this is exactly

what the posterior represents. Admittedly this is subjective due to our specification of

a prior but calibration of the method is possible given the right data.

2.1.3 The MatInspector and MATCH methods

Early PWM scanning algorithms such as MatInspector [Quandt et al., 1995,Cartharius

et al., 2005] and MATCH [Kel et al., 2003] use ad hoc scoring functions where the

sequence is matched against the PWM using heuristics that depend on the degree of

conservation at each position in the PWM. We describe both in more detail mainly for

their historical relevance.

Quandt et al. developed the MatInd and MatInspector programs to predict TFBSs in

sequences based on PWMs in TRANSFAC [Quandt et al., 1995,Cartharius et al., 2005].

The MatInd program takes as input a PWM or a set of sequences representing the

TFBSs and calculates a conservation score, Ci(w), for every position w in the PWM or

sequence alignment

Ci(w) =
100

log 5

[ ∑
b∈A,C,G,T,gap

θwb log θwb + log 5

]
(2.9)

so that 0 ≤ Ci(w) ≤ 100. Note that Ci(w) = 0 when all θwb = 1
5

and Ci(w) = 100

when exactly one θwb = 1. These Ci(w) are used to weight the relative contributions of

different positions in the TFBS to the overall score. Positions that are highly conserved

contribute more to the score than vague positions. To assess a putative TFBS, the

MatInspector program calculates a matrix similarity score, mat sim, defined as

mat sim =

∑W
w=1Ci(w)θwxw∑W

w=1Ci(w) maxb∈{A,C,G,T,gap} θwb
(2.10)

The MATCH algorithm developed by Kel et al. [Kel et al., 2003] is similar to MatInspec-

tor in that it uses a heuristic scoring scheme that bears some resemblance to a likelihood

ratio weighted by conservation information. Kel et al. define the matrix similarity score,

mSS, as

mSS =
Current−Min

Max−Min
(2.11)
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where Current, Min and Max are defined as

Current =
W∑
w=1

I(w)θwxw (2.12)

Min =
W∑
w=1

I(w) min
b∈{A,C,G,T}

θwb (2.13)

Max =
W∑
w=1

I(w) max
b∈{A,C,G,T}

θwb (2.14)

where I(w) is the information content at position w in the PWM

I(w) =
∑

b∈{A,C,G,T}
θwb log(4θwb) (2.15)

I(w) in the MATCH algorithm is analogous to Ci(W ) in the MatInspector algorithm.

Overall the MatInspector algorithm differs in that it can be used with gaps in the

alignment but both implicitly assume a uniform 0-order background model. For many

genomes this is not a good approximation. Otherwise the MATCH algorithm and

the MatInspector algorithm are very similar: c.f. Equations 2.10 and 2.11. Kel et

al. claim [Kel et al., 2003] that the MATCH algorithm is more discriminative than

the similar MatInspector algorithm without showing supporting data. Kel et al. also

claim [Kel et al., 1999] that methods such as MatInspector and MATCH that incorpo-

rate conservation information into the scoring system are to be preferred over scoring

methods based on the likelihood ratio although they do not show data supporting this

claim. The MATCH algorithm is associated with the TRANSFAC PWM database. Kel

et al. have calculated different cut-off thresholds for each PWM in TRANSFAC. These

are intended for users who wish to minimise the false positive rate, the false negative

rate or a combination of both.

2.1.4 p-value calculations

As most methods report p-values there has been much research into algorithms to calcu-

late these p-values efficiently. The p-value of a score is the probability of seeing this score

or better inW -mers drawn from a background model. Again a 0-order background model

is typically assumed. Staden devised the first method to tackle this problem [Staden,

1989]. He came up with an efficient numerical method for calculating the probabilities

of finding motif matches in sequences. Claverie and Audic gave a method for calculating

the distribution of scores for a given PSSM and 0-order genomic background frequen-
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cies [Claverie and Audic, 1996]. Beckstette et al. developed a dynamic programming

technique, ESAsearch, to calculate a suitable score threshold for a PSSM given a desired

p-value or E-value threshold [Beckstette et al., 2006]. This threshold is based empiri-

cally on the matches to the PSSM in a large sequence database. Similarly Schones et

al. present a method called STORM that uses gapped data structures to empirically

estimate the p-values based on a large database of known promoter regions [Schones

et al., 2007]. Touzet and Varré show that the problem of calculating p-values is NP-

hard and present an improved calculator [Touzet and Varré, 2007]. The difficulty of

calculating p-values is explained by the exponentially large number of potential TFBSs

(4W for TFBSs of size W ). Each TFBS can have a different score and a näıve algorithm

would enumerate all 4W possible TFBSs. Pizzi et al. present a collection of algorithms

to scan for TFBSs by p-value in large sequence sets [Pizzi et al., 2011]. Beckstette et

al.’s PoSSuM software is also designed for large sequence sets and Pizzi et al. present a

thorough comparison of speed. They are able to scan the human genome for the entire

JASPAR motif set (123 PSSMs) in 18 minutes at a threshold of p = 0.0001.

2.2 Integrative approaches

Despite the work that has gone into the methodology of sequence based predictions it is

well known that they suffer from high false positive rates which are difficult to control.

After all most genomes are large and a lot of PWMs are reasonably degenerate. Thus

one would expect to find a large number of spurious matches to any given PWM in

a scan of sequences of any great length. All the above approaches make predictions

using PWMs and sequence data alone. Many authors have attempted to improve the

predictions by integrating other data. Plenty of other types of such data are available.

For example: functional binding sites are likely to be conserved across species; some TFs

are more likely to bind in the presence of cofactors; clusters of TFBSs in the genome can

signify that the region is likely a regulatory region increasing the likelihood that other

TFs bind there; epigenetic marks can be correlated with TF binding; TFBSs are more

likely to be located near TSSs. In this section I review these concepts and highlight

some of the methods that use them to predict TFBSs.

TFBSs are known to co-locate to enable interactions between the TFs. Several algo-

rithms capitalise on this by looking for clusters of TFBSs. Cister uses a hidden Markov

model to search for clusters of TFBSs [Frith et al., 2001]. Cluster-Buster [Frith et al.,

2003] is the third generation of the Cister algorithm and uses a simplified model to

improve its run-times. Rajewsky et al. present segmentation algorithms that locate

enhancers in the Drosophila genome [Rajewsky et al., 2002].
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Some TFBS prediction methods [Moses et al., 2004b, Siddharthan et al., 2005, Kher-

adpour et al., 2007, Hawkins et al., 2009, Xie et al., 2009] use alignments to related

species to increase their predictive power. I describe these in more detail in the follow-

ing Section 2.2.1 as they are relevant to the evaluation of the algorithm presented in

this chapter.

TFBS prediction methods that treat each putative TFBS location independently can

predict impossible overlapping binding sites. Dynamic programming approaches [Was-

son and Hartemink, 2009] can overcome this deficiency. They model all potential DNA

binding proteins and locations simultaneously. In this way they explicitly model limited

access to DNA. These dynamic programming approaches can also take account of the

effect of multiple weak binding sites [Rajewsky et al., 2002,Roider et al., 2007].

Recently experimental evidence for epigenetic effects has been integrated into prediction

algorithms. CENTIPEDE [Pique-Regi et al., 2010] is an archetypal state-of-the-art

TFBS predictor. It integrates information such as sequence, conservation, distance to

TSS, activating and repressing histone modifications and DNase I cuts.

Cuellar-Partida et al. present a method to integrate epigenetic data into the motif scan-

ning process as position-specific priors [Cuellar-Partida et al., 2012]. Their method

is quite general in that any location data can be used to generate these priors. They

tested their method using histone modification and DNase I hypersensitivity data. Their

method is presented favourably in a comparison against the more complicated model of

CENTIPEDE.

Ernst et al. provide another typical method [Ernst et al., 2010]: they use data such

as sequence, conservation, estimated DNA melting temperature, GC-content, DNase I

hypersensitivity, and histone modifications.

MotEvo [Arnold et al., 2012] is a method that combines the features of other tools

that predict well. MotEvo incorporates an explicit evolutionary model; an unknown

functional element concept; an enhancer predictor; and dynamic programming to model

steric hindrance and weak binding sites.

2.2.1 Phylogenetic methods

Methods for TFBS prediction that use phylogenetic information can be broadly cat-

egorised four ways: alignment-free methods; simple alignment methods; phylogenetic

motif model (PMM) methods and branch length score (BLS) methods. All methods

use a set of related sequences. The sequence in the primary species under consideration

is termed the central sequence. The other sequences are assumed to be from related

species. These are termed the related sequences.
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Alignment-free methods

Alignment-free TFBS prediction methods do not require a multiple alignment of the

sequences being considered. Typically they predict TFBSs in the central sequence and

modify these predictions based on an analysis of the related sequences. As they do not

use an alignment, they are not subject to problems of mis-alignment and can handle

situations where TFBSs have been lost and regained through evolution. They can also

integrate evidence from multiple weak TFBSs in related sequences rather than relying

on one strong TFBS to be aligned exactly with the site in the central sequence. On the

other hand, a set of aligned TFBS predictions is strong evidence that a TFBS exists as

non-neutral rates of evolution suggest the site is functional.

PhyloScan [Carmack et al., 2007,Palumbo and Newberg, 2010] is an algorithm that uses

phylogenetic conservation and TFBS clustering to detect regulons in bacteria. Phy-

loScan uses p-value combination techniques to integrate the information from related

sequences. It can work on aligned or unaligned sequences. It is primarily used for

analysis of bacterial sequences.

Simple alignment methods

Simple alignment methods typically score a PWM in each sequence in an alignment.

Scores in the central sequence are updated based upon scores in nearby regions of the

alignment in the related sequences. For example H̊andstad et al. introduced a weighted

sum (WS) method [H̊andstad et al., 2011]. In this method the scores in the central

sequence were updated by adding half of the maximum score obtained in a window

surrounding the aligned TFBS in each of the related sequences. The window was defined

as the aligned TFBS extended by 15bp in both directions.

Phylogenetic motif models

A PMM is a generalisation of a PWM from a single sequence to a multiple alignment.

Whereas a PWM models TFBSs in a single sequence, a PMM models TFBSs across

all the sequences in an alignment. A PWM of width W is a matrix of size W × 4, a

PMM for a multiple alignment of N sequences is a tensor of size W ×N × 4. The PMM

provides the frequency of each possible base at each position of every sequence in the

alignment. PMMs are normally applied in an analogous manner to PWMs. That is, the

log-likelihood of a segment of a multiple alignment under the PMM is compared to the

log-likelihood of the segment under a background model. Similarly to PWMs, positions
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and sequences are treated independently and because of this the log-likelihood scores

are additive.

PMMs are typically created from an existing PWM, a phylogenetic tree and an evolu-

tionary model. The tree defines the evolutionary relationships and distances between

the sequences. The evolutionary model defines how likely any base pair substitution

is. To calculate a PMM accurately requires summing over all possible substitutions in

every branch of the tree. Depending on the topology of the tree this process can be com-

putationally intensive. This can restrict the application of PMM methods to multiple

alignments with only a few sequences.

Examples of methods that use PMMs are MONKEY [Moses et al., 2004b], rMon-

key [Moses et al., 2006], Motiph [Hawkins et al., 2009] and MotEvo [Arnold et al.,

2012]. I will describe each in a little more detail.

MONKEY and rMonkey

To the best of my knowledge, MONKEY [Moses et al., 2004b] was the first TFBS pre-

dictor to use ideas of phylogenetic conservation. MONKEY was the top performer in

an independent evaluation [Hawkins et al., 2009], performing better than the authors’

own method, Motiph. MONKEY is a method for locating conserved TFBSs in multi-

ple sequence alignments. It was originally developed and evaluated on Saccharomyces

genomes.

MONKEY is based on a probabilistic model of TFBS conservation. It tests if a given

segment of the multiple alignment is more likely to be part of the genomic background

or part of a conserved TFBS. This is directly analogous to the likelihood ratio scoring

functions described in Section 2.1.2 but generalised to the case with multiple sequences.

The MONKEY model assumes that the site is present in all the aligned sequences.

MONKEY uses two separate evolutionary models: one for substitutions in TFBSs and

the other for background substitutions. This captures the notion that substitutions

in conserved binding sites should evolve more slowly than in background sequences.

MONKEY allows the user to choose between models for substitutions of both types. For

the motif substitutions, the default is a model from Halpern and Bruno (HB) [Halpern

and Bruno, 1998], but a Jukes-Cantor model (JC) [Jukes and Cantor, 1969], a “simple”

model and a model called “mk” are also available. The simple model is not actually an

evolutionary model but one where MONKEY averages over the log-likelihoods in each

sequence. In their original publication on MONKEY, [Moses et al., 2004b] note that the

HB model out-performs this simple model but that even the simple model greatly out-

performs scanning just one sequence. The mk model does not appear to be described
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either in the MONKEY publication nor in the MONKEY software documentation. For

the background substitutions, MONKEY provides the JC model by default and also the

Hasegawa-Kishino-Yano model (HKY) [Hasegawa et al., 1985].

One drawback of the MONKEY method is that the run-time and memory requirements

scale poorly in the number of aligned sequences. Each PMM position has 3N free

parameters where N is the number of aligned sequences. Calculation of these parameters

from the motif substitution model and the single-species PWM is slow for more than a

few sequences.

Moses et al. presented the rMonkey algorithm as part of a study highlighting the turnover

of functional TFBSs between Drosophila species [Moses et al., 2006]. They studied the

Zeste TF in four Drosophila species and estimated a turnover rate of around 5% of

TFBSs between species. As part of this analysis they updated the MONKEY algo-

rithm to create the rMonkey algorithm. rMonkey differs in allowing more flexibility in

the alignment. rMonkey uses a greedy heuristic to update the alignment such that the

highest-scoring sites align (so long as they align by at least one base pair in the original

alignment). This heuristic is designed to overcome local mis-alignments that the au-

thors expect to be common. Similarly to MONKEY, rMonkey’s run-time and memory

requirements scale poorly with the number of aligned sequences.

Motiph

The Motiph algorithm [Hawkins et al., 2009] is a variant of MONKEY that simply

ignores regions with gaps. In contrast, MONKEY removes gaps when considering each

TFBS. Motiph uses a star topology for the phylogenetic tree that simplifies the score

calculations. In their evaluation on yeast data, the authors found that MONKEY out-

performed Motiph.

MotEvo

It has been shown that TFBS prediction is improved by considering competition between

TFs for nearby TFBSs [Rajewsky et al., 2002,Roider et al., 2007,Wasson and Hartemink,

2009]; clustering of TFBSs [Frith et al., 2001, Rajewsky et al., 2002]; and conservation

of TFBSs in orthologous sequences [Kellis et al., 2003,Moses et al., 2004b,Siddharthan

et al., 2005,Hawkins et al., 2009]. MotEvo [Arnold et al., 2012] was designed as the first

TFBS predictor to incorporate all these features.

MotEvo incorporates an explicit evolutionary model in a similar way to MONKEY.

However, the MotEvo model does not insist that TFBSs are conserved across all the
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species in the given multiple alignment. MotEvo discards those sequences for which

the the TFBS is more likely under the background model than the PWM model on a

site-by-site basis. The authors of MotEvo argue that this improves the TPR of their

method. MotEvo uses the Felsenstein evolutionary model (F81) [Felsenstein, 1981].

MotEvo also incorporates the concept of Unknown Function Elements (UFEs). Some

conserved sequence elements may not be modelled by the PWMs available to MotEvo.

UFEs model these elements explicitly to avoid inferences of TFBSs labelled with the

incorrect TF. For instance, suppose we are searching for instances of a PWM but there

exist TFBSs for a different TF with vaguely similar binding preferences. Even if we

have no PWM for this different TF, its sites may be recognised because MotEvo’s model

rewards conservation across the sequences. However, its TFBSs will be associated with

the closest matching PWM. UFEs model these TFBSs explicitly without prior knowledge

of their PWMs.

MotEvo can use a maximum-likelihood approach to optimise the parameters of its model

for the sequences presented to it. These include the background prior (prior probability

of a TFBS), the prior probability of a UFE, and the PWMs themselves.

Branch length score methods

Like PMM methods, BLS methods also require an alignment and an evolutionary tree.

BLS methods quantify their confidence in a TFBS prediction by summing the total

length of branches in a phylogenetic tree connecting species that contain a TFBS at that

point in the alignment. This method captures the concept that more TFBSs predictions

in more distantly related species provide stronger evidence for a TFBS. The method

explicitly allows binding site turnover, where TFBSs can be gained and lost through

evolutionary substitutions. Multiple alignments are not perfect and a mis-alignment

can be indistinguishable from the loss of a TFBS. BLS methods are more sympathetic

to any such mis-alignments than PMM methods. BLS methods do not explicitly model

the substitutions between the related species and hence do not have as many parameters

as PMMs.

The first BLS method was presented by Kheradpour, Stark et al. in a study of twelve

Drosophila genomes using PWMs for 83 TFs [Kheradpour et al., 2007,Stark et al., 2007].

This original method used a binary classifier at a given threshold for TFBS prediction.

Xie et al. introduced the Bayesian Branch Length Score (BBLS) [Xie et al., 2009] which

incorporates uncertainty into the TFBS predictions and reports the expectation of the

sum of the branch lengths. Xie et al.’s comparison showed that the BBLS method

significantly out-performed the BLS method. H̊andstad et al. showed that BLS methods
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could be used with scoring schemes other than log-likelihood ratios. They took scores

from the MotifScan TFBS predictor [Naughton et al., 2006] and used them as input to

the BBLS method [H̊andstad et al., 2011].

2.3 The Binding Factor Analysis algorithm

The main contribution of this chapter is the Binding Factor Analysis (BiFA) algorithm.

The BiFA algorithm is a log-likelihood ratio based method to predict binding sites. It

works on a set of related sequences. This relationship would typically but not necessarily

be phylogenetic. It is not necessary to specify the evolutionary distances involved or

even a phylogenetic tree relating the species.

The BiFA algorithm is motivated in part by both the enhanceosome and the billboard

models of enhancers (see Section 1.1.5). The core of the algorithm is based on a model

where those TFs that bind anywhere in the related sequences are more likely to bind in

the central sequence. This encapsulates the billboard model of enhancers. As well as

this core algorithm there is a maximal chain extension. The maximal chain algorithm

discovers the longest and most probable conserved sequence of TFBSs that occur in all

of the sequences provided. This maximal chain algorithm encapsulates a relaxed version

of the enhanceosome model of enhancers. A full encapsulation of the enhanceosome

model would also consider the spacing and the orientation of the TFBSs across all the

species.

2.3.1 Core algorithm

The basic concept of the core algorithm is that in a Bayesian framework we can use

the log-likelihood ratio to probabilistically predict whether a TF binds to a TFBS (see

Section 2.1.2). When considering a single sequence this is just another way of scoring a

putative TFBS. However, the BiFA algorithm is designed to work on multiple sequences

using a billboard model of enhancers. The billboard model suggests that if we believe

the TF binds to the related sequences our belief that it binds to the central sequence

should be stronger. Using the Bayesian framework described in Section 2.1.2, we can

quantify our belief that the TF binds to each related sequence. Our belief that the TF

binds to the given TFBS in the central sequence is then updated to reflect the evidence

from the related sequences.

The input to the BiFA algorithm is a set of M+1 sequences {T0, T1, . . . , TM} where T0 is

the central sequence and T1, . . . , TM are the related sequences. Suppose for the moment
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that we are only interested in one PWM. Later for the maximal chain extension we

will need to consider multiple PWMs. Each sequence, Tm, has a certain number, Nm, of

potential TFBSs for the PWM. We label these TFBSs as Xm,1, . . . , Xm,Nm . We represent

the event that the TF binds to the nth TFBS in the mth sequence by Bm,n. Now using

the method given in Section 2.1.2 we can calculate the probabilities p(Bm,n|Xm,n) for

all m and n. Here we have to specify a prior probability of binding which we take to be

constant across all sites, p(Bm,n) = α. It would be possible to integrate other information

into the BiFA algorithm by making this prior position-specific. For example, if we had

DNase I hypersensitivity data we could use this to set a prior that varied across the

possible TFBSs.

We would like to update the binding predictions for the central sequence p(B0,n|X0,n)

using evidence of binding from the related sequences, T1, . . . , TM . We represent the

event that the TF binds to at least one potential TFBS in sequence Tm by Bm. We can

predict whether the TF binds anywhere in each related sequence using

p(Bm|Tm) = 1−
∏
n

[1− p(Bm,n|Xm,n)] (2.16)

that is one minus the probability that it does not bind anywhere in the sequence. In

practice we only consider those p(Bm,n|Xm,n) that are above some small value that we

call the phylogenetic threshold. This is a parameter of the BiFA algorithm.

Original updates

Now given a particular TFBS in the central sequence, X0,n, and the related sequences,

the original BiFA algorithm updates the probability that the TF binds to the TFBS

p(B0,n|X0,n, T1, . . . , TM) = M+1

√
p(B0,n|X0,n)

∏
m

p(Bm|Tm) (2.17)

Arguably taking this geometric mean is an ad hoc solution to the problem of integrating

evidence from the related sequences. When this method was first devised some time ago,

I had in mind that this ad hoc approach could be justified via an argument that the

sequences are not selected independently. Coming back to the method to write this thesis

it is difficult to make this justification. The geometric mean in Equation 2.17 averages

over probabilities but the intention was to average over the evidence that is contributed

by each sequence. In our Bayesian setting, the probabilities in Equation 2.17 are a

combination of this evidence with the prior. Averaging over terms that include the prior

is counter-intuitive so later I will present a modified update method to Equation 2.17
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that does not do this. However, as some of the work presented in this thesis is based

on Equation 2.17 I present the method as it was used. Later I will compare results

from both alternatives. The modified update method is not based on a full probabilistic

model, but does average over the evidence and is perhaps easier to justify. I note that

the original method was developed in collaboration with developmental biologists and

computational biologists and as such has proved to be useful despite its ad hoc nature.

Modified updates

Here I present the modified update for the core BiFA algorithm that averages over the

evidence provided by each sequence rather than the probabilities as in Equation 2.17.

The modified update calculates the probability that the TF binds to the n’th binding

site as follows. First, for each related sequence, Tm, a Bayes factor, Km, representing

the evidence in favour of the TF binding at least once to that sequence is calculated

(see Equation 2.20 below). Because the sequences are related and therefore the evidence

given by each is not independent, these Bayes factors are integrated via a geometric mean

(or equivalently an arithmetic mean on the log probability scale) (see Section 1.3.5). So

if K0,n is the Bayes factor in favour of the hypothesis B0,n as opposed to B0,n we have

p(B0,n|X0,n, T1, . . . , TM)

p(B0,n|X0,n, T1, . . . , TM)
= M+1

√√√√K0,n

M∏
m=1

Km
p(B0,n)

p(B0,n)
(2.18)

Note that the geometric mean is only averaging the Bayes factors and that the prior

is not included in this mean. This is in contrast to the original update method of

Equation 2.17

To justify why we prefer this update method we note that it is difficult to model or

quantify the degree of relatedness of the sequences the BiFA algorithm is presented with.

In general, a user of the BiFA algorithm will have selected the sequences on the basis

that they are conserved between species. How the user has measured that conservation

is outside of the scope of the algorithm. However, we can certainly expect the presence

of a TFBS in one sequence to correlate with the presence of a TFBS in another. For this

reason we do not wish to over-estimate the strength of the evidence that the sequences

provide. As Bayes factors are multiplicative on the probability scale (and additive on the

log probability scale), this geometric (or equivalently arithmetic) mean seems a cautious

way to incorporate information from the related sequences. Indeed, if we knew that

all the related sequences were identical, the modified update method in Equation 2.18

would treat them as if we had only seen one of them. Admittedly this modified update

is also an ad hoc method and I do not have a probabilistic model that justifies the above
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equation. However, the fact that Bayes factors measure the evidence in favour of a

hypothesis provides a certain justification.

It would be possible albeit difficult to construct a full probabilistic model that models

the relatedness of the sequences and to do inference in this model as a way of integrating

the information from the related sequences. This could lead to its own set of issues. The

model would have to be parameterised and calibrated. This calibration would perhaps

be suitable for some types of related sequences but I wanted the BiFA algorithm to be

agnostic to the source of the sequences it analyses. The sequences presented to the BiFA

algorithm may have been selected by any method. Any model of dependencies between

them would impose assumptions. For this reason an algorithm with few parameters

seems advisable.

I have not yet specified how to calculate the Bayes factors, Km, for binding in the re-

lated sequences, Tm, in Equation 2.18. Using Equation 2.16, we are able to calculate

the posterior probability that the TF binds at least once to the sequence, p(Bm|Tm). It

is straightforward to calculate the posterior odds, p(Bm|Tm)
1−p(Bm|Tm)

, from the posterior proba-

bility. Now if we calculate the prior odds we can take the change from the prior odds

to the posterior odds as the Bayes factor, Km. To calculate the prior odds, we first

calculate the prior probability that the TF binds at least once to the sequence

p(Bm) = 1−
∏
n

[1− p(Bm,n)] = 1− (1− α)Nm ≈ Nmα (2.19)

where the approximation is valid when 1� αNm. Again it is straightforward to convert

the prior probability to the prior odds, p(Bm)
1−p(Bm)

, and when combined with the posterior

odds we have

Km =
1− p(Bm)

p(Bm)

p(Bm|Tm)

1− p(Bm|Tm)
(2.20)

The difference between this modified update and the original update is that the averaging

of evidence occurs in odds-space as opposed to probability-space. Both are ad hoc

methods but I believe the odds-space version is justifiable and may be more powerful.

2.3.2 Maximal chain extension

First I give an overview of the intention and workings of the maximal chain algorithm.

Later I will give the technical details.
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Overview

The maximal chain extension to the BiFA algorithm models the TFBSs of an enhanceo-

some that are conserved across the BiFA input sequences. In order to do this it examines

each sequence for the TFBSs of multiple PWMs. The algorithm looks for a sequence of

TFBSs that is preserved across all the sequences. The PWMs for each TFBS must be

the same for equivalent TFBSs in different sequences. Such a sequence is termed a chain.

I will try to clarify this with an example. Suppose we are analysing four sequences for

three PWMs, A, B and C. Suppose further that each sequence has strong binding sites

for A, B and C in that order. The maximal chain algorithm would return A, B, C as the

maximal chain. Now suppose that the binding sites for the second sequence are in the

order A, C, B. In this configuration the longest chain that is conserved in order across

the sequences is either A, C or A, B.

The algorithm does not just search for the longest chain irrespective of the strength of

the TFBSs. Each TFBS is assigned a weight and the maximal chain algorithm searches

for a chain conserved across all the sequences which has the largest weight. A chain’s

weight is defined as the sum of the weights of the TFBSs that comprise it. We weight

each putative TFBS with a measure of our belief that it is a TFBS. The maximal chain

algorithm also takes account of steric hindrance (see Section 1.1.4). Chains are not

permitted to use overlapping TFBSs.

Definitions

In this section I define the terms needed for the maximal chain extension. As above,

suppose the BiFA algorithm is given M + 1 sequences, T0, . . . , TM , only now suppose we

are considering Q PWMs, θ1, . . . , θQ, each representing the sequence binding preferences

of a TF. We need to extend our notation to accommodate the multiple PWMs and we

add an extra subscript, after the sequence subscript, m, and before the TFBS subscript,

n. So we have Xm,q,n is the nth possible TFBS for the PWM, θq, in sequence Tm. Note

that as the PWMs can have different widths, each PWM will have a different number of

potential TFBSs, Nm,q, in each sequence, Tm. We use the log-likelihood ratio defined in

Equation 2.4 as a score, Sm,q,n, for each potential TFBS, and only retain those TFBSs

above some user-specified threshold, V .

Now we define a chain element, uq = uq0, . . . , u
q
M , as a set of TFBSs for a PWM, θq,

where each sequence is represented by exactly one TFBS,

{Xm,q,uqm : 0 ≤ m ≤M}



50 2.3. THE BINDING FACTOR ANALYSIS ALGORITHM

A chain element represents the concept of a TFBS that has been conserved across all

the sequences. Note that the number of chain elements for a particular PWM, θq, is∏
m |{Sm,q,n ≥ V }| which grows exponentially as O(|{Sm,q,n ≥ V }|M+1) in the number

of putative TFBSs above the threshold, V . We define a partial order on the set of chain

elements for all PWMs by uq < vq′
if and only if Xm,q,uqm < X

m,q′,vq
′
m

for all 0 ≤ m ≤M .

Here we are using the natural partial ordering on TFBSs where Xm,q,n < Xm,q′,n′ if and

only if Xm,q,n occurs strictly before (forbidding overlaps) Xm,q′,n′ in the sequence, Tm.

So one chain element precedes another if all of its TFBSs precede the corresponding

TFBSs in the other chain. The weight (or score) of a chain element, Suq , is defined as

the sum of the weights of its constituent TFBSs,

Suq =
∑
m

Sm,q,uqm

Two chain elements, uq and vq′
are said to be comparable if and only uq < vq′

or

vq′
< uq. A chain, U , with NU elements is an ordered set of chain elements each pair

of which are comparable,

U = {uqi

i : uqi

i and u
qj

j are comparable, 1 ≤ i ≤ NU , 1 ≤ j ≤ NU , 1 ≤ qi ≤ Q}

A chain represents the concept of an enhanceosome, that is an ordered set of TFBSs

that are conserved (in order) across all the sequences. The weight (or score) of a chain,

is the sum of the scores of its elements,

SU =
∑
i

Su
qi
i

A maximal chain is a chain such that no other chain has a higher score. A maximal chain

can therefore be seen as the best sequence of PWMs for which there is a TFBS in each

sequence. Furthermore the order of these TFBSs is conserved across all the sequences.

This fits our enhanceosome model albeit ignoring the spacing and orientation of the

TFBSs.

Implementation

It turns out that if maximal chains are defined in this way, there exist efficient algorithms

to discover them due to Felsner, Müller and Wernisch [Felsner et al., 1997]. In the k-

dimensional box representation terminology of Felsner et al. each chain element is a

(M + 1)-dimensional box and a maximal chain is a maximum weighted independent

set in an interval graph. Felsner et al.’s algorithm to discover a maximal chain runs
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in O(n logM n) time where n is the number of chain elements. I have implemented the

MAXCHAIN algorithm given by Felsner et al. in C++ and this forms the maximal chain

extension of the BiFA algorithm.

TFBS orientation

The enhanceosome model is based upon specific protein-protein interactions. These

interactions will almost certainly depend on the positioning and orientation of the TFs

involved. Including the orientation of the TFBSs in the maximal chain algorithm would

be straightforward. Each TFBS could be labelled with a ‘+’ or a ‘-’ depending on which

strand binding is predicted. Only those TFBSs that matched their TF and their label

would be considered as part of a chain element.

Modelling the spacing between TFBSs might also be worthwhile but could also be too

restrictive. It is reasonable to suppose that the spacing between TFBSs could vary

across species.

Alignment-free

The BiFA algorithm differs from most other algorithms that use phylogenetic models of

TFBSs. Almost all other algorithms use an explicit model of the phylogenetic tree relat-

ing the species of the sequences under consideration. In addition most require a multiple

alignment between the sequences. Whilst this has certain benefits in that species that

are closely related can be treated differently from more distantly related species it also

has drawbacks. Phylogenetic trees and multiple alignments are normally estimated using

maximum likelihood procedures and there is no guarantee they are correct. In addition

phylogenetic trees may not always be available for the relevant species. It can be time

consuming for a user of a PWM scanning method to have to estimate a tree in order to

make predictions. The use of a specific multiple alignment precludes the possibility of

other alignments. The BiFA algorithm does not suffer from any of these drawbacks as

neither a phylogenetic tree nor a multiple alignment is required. The BiFA algorithm

models phylogeny implicitly by integrating evidence from each sequence and in a sense it

integrates over all possible alignments by considering all the possibilities in the maximal

chain algorithm.

Another point to note is that any method that uses multiple alignments may not work

well when there has been high turnover of TFBSs. See Section 1.1.5 for a discussion

of this in the context of phylogenetic conservation. This is perhaps most relevant for

enhancers that follow the billboard model.
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One drawback of BiFA’s alignment-free model is that it can be sensitive to the lengths

of the related sequences. The BiFA algorithm analyses the whole length of the related

sequences for TFBSs. When the related sequences are long it is easier to find a match

to the PWM. This can affect how the predictions in the central sequence are updated.

Therefore, the length of the related sequences should not be much longer than the

distance a TFBS might have moved between species. Unfortunately, we do not have

good estimates for this distance. Enhancers are generally assumed to be of the order of

a few hundred base pairs in length. The BiFA algorithm has been designed with this

in mind. It has been evaluated on sequences of length within an order of magnitude

of 300 base pairs. When the sequences are much longer than this it is reasonable to

break them up into segments (or chunks) and perform separate runs of the algorithm.

However, breaking up the sequences may require a multiple alignment to anchor the

break points across the sequences.

2.3.3 An application

I present an example of the application of the BiFA algorithm. I used the algorithm to

study an enhancer of Nodal, a factor important in cell-fate specification and patterning

in the mouse embryo. This work was carried out for Jérôme Collignon’s group at the In-

stitut Jacques Monod and forms part of a publication in Developmental Biology [Granier

et al., 2011]. The enhancer in question is known as the PEE cis-regulatory region.

Based on a sequence alignment technique [Baxter et al., 2012], regions upstream of the

Nodal TSS conserved in mouse, human and cow were identified. The most 5’ of these

was the known PEE enhancer. I analysed the regions using the core BiFA algorithm

and matrices from the commercial version of TRANSFAC. The algorithm predicted two

strong LEF/TCF1 binding sites in the PEE enhancer (see Figure 2.1). LEF/TCF factors

are known to be effectors of the canonical Wnt/β-catenin signalling pathway [Arce

et al., 2006]. This pathway has been independently implicated in embryonic patterning

providing further evidence that these TFBSs are likely to be functional.

2.4 A comparison of TFBS prediction methods

In contrast to the task of motif finding [Tompa et al., 2005,Sandve et al., 2007], TFBS

prediction does not have a long-established benchmark. Until recently the lack of a

gold standard of binding sites across a wide range of TFs hindered the evaluation of

PWM scanning methods. The abundance of high-throughput high-quality ChIP data

now allows better evaluations to be conducted. In this section I present an overview of



CHAPTER 2. PREDICTING BINDING SITES 53

Pee

Distance from
Nodal TSS

O
d
d
s
 a

g
a
in

s
t ra

n
d

o
m

 o
c
c
u

rre
n

c
e5000

10000

15000

20000

25000

30000

-11819 -11695

T
G
A
C

A
T
G
C

GA
C
T

A
C
G
T

A
C
G
T

C
T
A
G

CG
T
A

CG
A
T

TA
C
G

G
A
C
T

A
G
C
T

LEF1/TCF1
wnt pathway

T
G
A
C

A
T
G
C

GA
C
T

A
C
G
T

A
C
G
T

C
T
A
G

CG
T
A

CG
A
T

TA
C
G

G
A
C
T

A
G
C
T

LEF1/TCF1
wnt pathway

Figure 2.1: A graphical depiction of the posterior odds associated with putative TFBSs
in the PEE enhancer upstream of the Nodal TSS. Each box represents a putative TFBS.
TFBSs for TFs associated with the Wnt/β-catenin signalling pathway are coloured blue.
The distance from the Nodal TSS in base pairs is given on the x-axis. The length of the
boxes represent the region that the TFBS occupies on the DNA. The posterior odds for
the TFBSs are given on the y-axis. The two most significant predictions are both for
a PWM representing a LEF1/TCF1 heterodimer’s binding preferences. Extra detail is
provided for these TFBSs in the white region next to them. The sequence logo detailing
the binding preferences of the PWM is given and for each binding site, the actual bases
in the DNA sequence are shaded. This visualisation makes it possible to see that the
more significant TFBS is a better match for the PWM as it has a T as opposed to an A

in the fourth position from the end. This figure is produced by the implementation of
the BiFA algorithm. It was edited slightly for publication.
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other work that has compared phylogenetic TFBS predictors; I describe the data and

methods I have used in the comparison in this thesis; and finally I present some results

and a discussion highlighting the main points of the results which I relate to previous

benchmark studies.

2.4.1 Previous comparisons of phylogenetic methods

When describing their BBLS method, Xie et al. compared its performance to that of

MONKEY and BLS on ChIP data sets in human for the TFs: CTCF, NRSE, p53, Myc,

STAT1, and NFκB. BBLS was found to be significantly better than both other methods

on all the data sets.

An investigation into phylogenetic TFBS prediction methods [Hawkins et al., 2009] using

a gold-standard set of TFBSs in Saccharomyces cerevisiae from SCPD [Zhu and Zhang,

1999] found that simple non-phylogenetic methods performed better than phylogenetic

methods. The phylogenetic methods tested were: MONKEY, rMonkey and the authors’

own method, Motiph. However, Hawkins et al. were concerned that their evaluation was

biased by TFBSs that were missing from the gold standard. They used an approach

that shuffles the columns of PWMs to estimate the distribution of scores on background

sequence. Using this approach the phylogenetic motif scanners performed better than

simple non-phylogenetic methods. The top-performing method was MONKEY. Hawkins

et al. suggested that phylogenetic methods might be better at predicting weak TFBSs.

The MotEvo authors chose to evaluate their method on ChIP-seq data for five human

TFs: CTCF; GABP; NRSF; SRF and STAT1 [Jothi et al., 2008, Valouev et al., 2008],

using an alignment to six other mammals: mouse, dog, cow, monkey, horse and opos-

sum. They compared MotEvo to the MONKEY and the PhyloScan algorithms. MotEvo

was the top performer in this evaluation. The MotEvo authors did not choose to do a

direct comparison of TFBS prediction performance using alignments of varying numbers

of species. They chose to evaluate MotEvo’s ability to predict enhancers as the num-

ber of species in the alignment varied. They investigated 76 experimentally validated

blastoderm enhancers from Drosophila with alignments ranging from a single species to

nine species. They found the coverage of predicted enhancers increased from 57% to

93% as the number of species in the alignment increased.

Recently, H̊andstad et al. have proposed a benchmark framework for the TFBS predic-

tion problem based on publicly available human ChIP-seq data [H̊andstad et al., 2011].

They assessed five different TFBS prediction methods: PWM, MotifScan, WS, and two

BBLS methods. They found that methods that use sequence conservation perform bet-

ter in general than simpler methods. They found this effect was TF-dependent and
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seemed to be strongest with PWMs of low information content and ChIP-seq peaks

of high affinity. Indeed, they found that simpler methods can out-perform conserva-

tion based methods for TFs with high information content. H̊andstad et al. came to

the opposite conclusion about the utility of phylogenetic methods for detecting weak

vs. strong TFBSs to Hawkins et al.: they suggest phylogenetic methods are better at

detecting strong TFBSs.

One comparison that is lacking in all the evaluations above is a direct comparison of

how increasing the number of sequences in an alignment correlates with a method’s

performance. The MotEvo evaluation comes closest to an evaluation of the benefits

associated with including more species in an alignment. However, it measures this in

an indirect manner, by evaluating the method’s ability to predict enhancers. The study

presented in this chapter addresses this question directly.

2.4.2 The benchmarks

The benchmarks presented in this study are based on the evaluations by H̊andstad et

al. Their evaluations only used binding data from experiments in human cell lines.

In this study I have extended their proposed framework with additional benchmarks

derived from Drosophila binding data. I have also extended the framework to study

the effects of varying the number of aligned sequences presented to a single method.

In contrast, H̊andstad et al. compared distinct methods that used different numbers

of aligned sequences. I have also used a slightly different statistic for measuring the

performance of methods at high specificity.

To clarify the structure of the benchmarks I define some terms: a benchmark refers to

a collection of genomic binding data for one species that has typically come from one

experimental source but may contain data for more than one TF. Each benchmark has a

multiple alignment associated with it over a given set of genomes, including the genome

of the benchmark’s species. Each TF has a PWM associated with it that describes its

binding preferences. A benchmark has multiple test cases for each TF. Each test case

is a genomic region usually with one positive sub-region (where the TF is supposed to

bind), surrounded by several negative sub-regions (where the TF is not supposed to

bind).

The H̊andstad site benchmark

The H̊andstad site benchmark is designed to address the problem of locating a TFBS

in a sequence bound by a known TF. H̊andstad et al. took publicly available ChIP-

seq data from the ENCODE project [Birney et al., 2007]. The ENCODE project is a
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large consortium whose aim is “to identify all functional elements in the human genome

sequence”. Most of the binding data used in this benchmark is from the K562 cell line

although some is from the HeLa-S3 cell line. These HeLa cell line data are treated

separately in my analysis and their TFs are labelled as “hela”. I followed the protocol

described in [H̊andstad et al., 2011] for creating test cases from the called ChIP-seq

peaks which I describe briefly here. Each peak was considered a positive sub-region and

surrounded by a 20kb region that was partitioned into sub-regions of 200bp each of which

were considered negative sub-regions. This resulted in 69,267 test cases, each containing

one positive sub-region and 100 negative sub-regions. The benchmark includes data for

the eight TFs: c-Fos; c-Jun; c-Myc; E2F4; GATA1; Max; NFKB; NRSF. The TFs c-Fos,

c-Myc, E2F4 and Max have data for both cell lines, the other TFs only have data for the

K562 cell line. The number of cases per TF can be seen in Figure 2.2. The benchmark

uses an alignment of 18 placental mammals extracted from the 28-way alignment of the

hg18 assembly downloaded from the UCSC Genome Browser [Kent et al., 2002]. The

phylogenetic tree is shown in Figure 2.3. I used the same PWMs as H̊andstad et al.

These are shown in Table 2.1.

The turnover benchmark

Bradley et al. examined experimental evidence for the binding of six TFs in two closely

related Drosophila species: melanogaster and yakuba [Bradley et al., 2010]. They found

that almost all the bound regions were also bound in the orthologous sequence. However,

there was considerable variation in the levels of binding between the species. This

variation was highly correlated across all six TFs suggesting a factor-independent reason

for this variation such as chromatin accessibility. However, the correlation was not

perfect and they found numerous instances where the variation was apparently driven

by the gain or loss of TFBSs in one of the sequences.

I downloaded the Drosophila melanogaster peaks from the Gene Expression Omnibus

(accession GSE20369). The TFs investigated were bicoid (bcd); caudal (cad); giant

(gt); hunchback (hb); knirps (kni); Krüppel (kr). Following the protocol defined for the

H̊andstad site benchmark, I converted the peaks into 29,343 test cases. The benchmark

uses a multiple alignment of the two Drosophila species extracted from the 15-way

alignment of the dm3 assembly downloaded from the UCSC Genome Browser. The TFs

and their PWMs are shown in Table 2.2.
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Figure 2.2: The number of test cases in the H̊andstad sites, modENCODE and turnover
benchmarks.

The modENCODE benchmark

The modENCODE project aims to “provide the biological research community with

a comprehensive encyclopedia of genomic functional elements in the model organisms

C. elegans and D. melanogaster” [Celniker et al., 2009]. To this end, members of the

project have conducted several high quality TF binding experiments for Drosophila

melanogaster.

I downloaded peaks from the modENCODE experiment “Chromatin Binding Site Map-

ping of Transcription Factors in D. melanogaster by ChIP-seq” from modMine [Contrino

et al., 2012] for the TFs Deformed (Dfd), even skipped (eve), huckebein (hkb), knirps



58 2.4. A COMPARISON OF TFBS PREDICTION METHODS

0.0024

0.0047

0.015

0.09

0.036 rheMac2

0.026
0.0066hg18

0.0066panTro2

0.16 otoGar1

0.18 tupBel1

0.015

0.035

0.22 cavPor1

0.22
0.083 mm8

0.091 rn4

0.22 oryCun1

0.018

0.021

0.012

0.19 bosTau3

0.01

0.11 equCab1

0.049
0.098 felCat3

0.1 canFam2

0.32 sorAra1

0.03

0.05
0.24 echTel1

0.11 loxAfr1

0.17 dasNov1

Figure 2.3: The phylogenetic tree used for the H̊andstad site benchmark. The tips
are labelled with their UCSC Genome Browser assembly identifiers. The branch labels
represent relative evolutionary time.

(kni), tailless (tll), and translucent (Trl). Peaks in the mitochondrion genome were dis-

carded. Following the protocol defined for the H̊andstad site benchmark, I converted

the remaining peaks into 9,861 test cases. The number of cases per TF is shown in Fig-

ure 2.2. The benchmark uses a multiple alignment of ten Drosophila species extracted

from the 15-way alignment of the dm3 assembly downloaded from the UCSC Genome

Browser. The ten species are: melanogaster, simulans, yakuba, erecta, ananassae, pseu-

doobscura, williston, virilis, mojavensis and grimshawi. The phylogenetic tree for the

benchmark is shown in Figure 2.4. The TFs and their PWMs are shown in Table 2.3.
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TF PWM Width IC IC/base Logo

GATA1 MA0036.1 5 6.85 1.37

E2F4 M00803 6 8.87 1.48

c-Fos MA0099.2 7 9.19 1.31

c-Jun MA0099.2 7 9.19 1.31

c-Myc M00799 7 10.62 1.52

Max MA0058.1 10 14.14 1.41

NFKB MA0105.1 11 16.54 1.5

NRSF M01028 19 25.23 1.32

Table 2.1: The TFs and PWMs in the H̊andstad site benchmark, sorted by information
content (IC) given in bits. PWM identifiers that start MA (respectively M) refer to
the JASPAR (respectively TRANSFAC) database. Note that c-Fos and c-Jun share the
same PWM.

2.4.3 Framework

In this section I present how the benchmark framework evaluates the methods. When a

TFBS prediction method is applied to a benchmark, the method is presented with each

test case individually. The method’s predictions for each test case are mapped to the

positive and negative sub-regions in the test case. Each such sub-region is scored by the

strongest prediction in that sub-region. In this way the number of TPs, FPs, TNs and

FNs for each TF in a benchmark can be calculated for each scoring threshold.
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TF PWM Width IC IC/base Logo

bicoid BCD.MTF 7 9.91 1.42

caudal CAD.MTF 10 10.99 1.1

giant GT.MTF 12 13.08 1.09

hunchback HB.MTF 10 13.5 1.35

knirps KNI.MTF 13 14.04 1.08

Krüppel KR.MTF 11 13.35 1.21

Table 2.2: The TFs and PWMs in the turnover benchmark, sorted by information
content (IC) given in bits. PWM identifiers refer to the iDMMPMM library [Kulakovskiy
and Makeev, 2010].
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Figure 2.4: The phylogenetic tree used for the modENCODE benchmark. The tips
are labelled with their UCSC Genome Browser assembly identifiers. The branch labels
represent relative evolutionary time.
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TF PWM Width IC IC/base Logo

even skipped EVE.MTF 9 10.14 1.13

Deformed DFD.MTF 8 11.02 1.38

translucent MA0205.1 10 11.17 1.12

tailless TLL.MTF 10 12.68 1.27

huckebein HKB.MTF 10 13.65 1.36

knirps KNI.MTF 13 14.04 1.08

Table 2.3: The TFs and PWMs in the modENCODE benchmark, sorted by information
content (IC) given in bits. PWM identifiers refer to the iDMMPMM library [Kulakovskiy
and Makeev, 2010] except for MA0205.1 which is from the JASPAR library.

Parallelisation

The benchmarks consist of over 100,000 test cases. Each test case has around 20kb of

central sequence, making around 2Gb in total. Depending on the benchmark, this is

aligned to almost as much sequence in each of 17, 9 or 1 other species. Running several

methods with varying parameters on these benchmarks is a technical challenge. I built

a test harness that allows parallelisation of this task across several Linux servers.

Alignments

In contrast to the work done by H̊andstad et al., the number of species used by each

method in this framework is not fixed by the prediction method. In their work the WS

method used three species and the BBLS method used 18 placental mammals. I have

extended the framework so that each prediction method can work with multiple align-

ments over varying numbers of species. When a method is applied to the benchmarks,

one parameter is the maximum number of species available to it. This is applied on a

test case-by-test case basis as each test case may not be aligned to all the species in
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the benchmark-wide alignment. That is, each test case may use aligned sequences from

different sets of species, but each such set is limited in number. This has allowed me

to investigate more closely the benefits of using data from varying numbers of related

species. The framework calculates phylogenetic sub-trees and sub-alignments as needed

for the different restricted subsets of species available to each test case.

Statistics

I plotted ROC curves and calculated AUC statistics (see Section 1.3.10) for each com-

bination of benchmark and method considered. However, I have not used the AUC

statistic as the primary measure of the methods’ performance. TFBS prediction has a

high FDR and we typically test many regions at a time, leading to large numbers of

positive predictions. Usually there are only limited resources to follow up on the predic-

tions, so there is particular interest in the performance of methods at thresholds that

correspond to high confidence predictions. A standard statistic to measure the perfor-

mance at high thresholds is the AUC50. However, as discussed earlier (Section 1.3.10),

this statistic has two shortcomings: firstly, it is sensitive to the size of the benchmark;

and secondly, 50 is an arbitrary choice that may not make sense on large (or small)

benchmarks as it corresponds to an extremely low (respectively high) FPR. [H̊andstad

et al., 2011] use both the AUC and AUC50 statistics in their comparison of TFBS pre-

diction methods. I prefer to use a statistic that represents the area under the ROC curve

bounded above by a given FPR. I call this statistic the AUCFPR. Given similar ratios of

positive to negative examples, this AUCFPR statistic is comparable across benchmarks

of varying sizes. The FPR threshold can be defined as the problem demands or as the

researcher prefers. I have used AUCFPR with a FPR of 5% as the primary measure of

the performance of the methods in this study.

The classification of regions into positive and negative examples will not be perfect.

Some of the peaks may not contain TFBSs for the TF in question as the cross-linking

step in ChIP-seq can detect indirect binding of the target TF via an intermediary TF.

Conversely, some of the negative examples may contain TFBSs that are not occupied

under the experimental conditions tested. For these reasons I do not expect any of the

methods to achieve high AUC statistics.

The Wilcoxon paired signed-rank test is a non-parametric hypothesis test [Wilcoxon,

1945] applicable to matched samples. The null hypothesis for the test is that the dif-

ference between the matched pairs for the two samples are symmetric about 0. The

alternative hypothesis in the one-sided version of the test I use is that the distribution

of one of the samples has a positive location shift. I use the test in this chapter to

compare samples of the AUCFPR statistic for pairs of methods.
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The box plots in this chapter follow the normal box plot conventions: the hinges at the

extremes of the box represent the first and third quartiles of the data and the band inside

the box represents the median (second quartile). The ends of the whiskers represent the

highest (respectively lowest) datum within 1.5 times of the inter-quartile range (IQR)

of the third (respectively first) quartile.

Prediction methods

I chose to compare the BiFA algorithm to two other phylogenetic TFBS prediction

methods: MONKEY and MotEvo and a non-phylogenetic TFBS prediction method,

FIMO.

2.4.4 Results

The MONKEY, MotEvo, FIMO and BiFA methods have several parameters. Before

evaluating them I endeavoured to determine which parameter settings had the best

performance on the benchmarks. For these tests, I limited the number of species in each

test case to four. Note that the turnover benchmark only has two species and the FIMO

method only uses the central sequence in each test case.

I prefer to optimise the parameters rather than use the default parameters as these are

not always well chosen. One potential drawback is overfitting the parameters to the

benchmarks. However, I expect that the large size of the benchmarks and the relatively

small number of parameters should mitigate against this. I optimised most methods

using evaluations that repeatedly sub-sample different test cases. This should also help

to prevent overfitting.

Optimisation of MONKEY parameters

MONKEY implements four motif substitution models and two background substitution

models. I compared all combinations to see which performed best on the benchmarks.

For the HKY background substitution model, I did not vary the transition transversion

rate ratio parameter but always left it at the default setting of 2.

The choice of MONKEY parameters made little absolute difference to either the AUC

and AUCFPR statistics across all benchmark/TF combinations (see Figures 2.5 and 2.6).

The changes were of the order of 0.001 and 0.0001 respectively which represent a change

of about 0.1% and 1% respectively. Hence the effect of changing the parameters was

small in both cases but greater on higher compared to lower confidence predictions.
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Figure 2.5: The performance of MONKEY as measured by the AUC statistic for different
parameter settings. An AUC statistic was calculated for each benchmark/TF/parameter
combination. The mean AUC statistic for each of the 33 benchmark/TF combinations
was calculated over all methods. The box plots represent the deviations from these
means grouped by the labelled parameters. The parameters are labelled by the motif
substitution model followed by the background substitution model. MONKEY allows
the motif model to be one of HB, mk, JC (with a substitution rate of 0.5), and simple.
The background model is one of JC or HKY (with a transition transversion rate ratio
of 2). The methods are sorted by descending median deviation.
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Figure 2.6: The performance of MONKEY as measured by the AUCFPR statistic for
different parameter settings. See the caption of Figure 2.5 for a description of how the
plot was generated.

However, despite these small differences, the JC background substitution model ap-

peared to perform consistently better under both statistics when compared to the HKY

model. Surprisingly the simple motif substitution model also appeared to consistently

outperform the explicit evolutionary models on both statistics. This contrasts directly

with the results published by the MONKEY authors [Moses et al., 2004b]. I tested if

these results were significant using a one-sided Wilcoxon paired signed-rank test. Using

this test, both the AUC and AUCFPR statistics of the MONKEY-simple-JC method

were significantly greater at the 0.05 level than those of the MONKEY-simple-HKY-2.0

method (p-values of 1.2e-5 and 5.2e-6 respectively). This suggests using the JC back-
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ground substitution model improves the performance of MONKEY. I also tested if the

effect of changing the motif substitution model was significant. I compared the AUCFPR

statistics of the top performing method MONKEY-simple-JC against the MONKEY-

JC0.5-JC, MONKEY-mk-JC and MONKEY-HB-JC methods. The simple method was

significantly better than both the JC0.5 and mk methods but not the HB method at

the 0.05 level (p-values of 0.041, 0.041 and 0.064 respectively).

In Moses et al.’s original publication on their MONKEY algorithm they compared the

simple scoring scheme to the HB motif substitution model and found that the HB model

was significantly better. I have used a different data set for my evaluation. Moses et al.

used data from yeast, I have data from Drosophila and human. Further work is needed

to identify the reasons for the discrepancy between their results and these results. In

particular, I plan to include a yeast benchmark in a later version of this study.

Optimisation of MotEvo parameters

To determine the best parameter settings for MotEvo, I considered the UFE and back-

ground priors and the option that allows the priors to be learnt. I did not test if

optimising the PWMs improved performance. As the priors can take any value in a con-

tinuous range I choose to use the spearmint method [Snoek et al., 2013] to find the best

parameter values. Spearmint is an algorithm that uses Gaussian processes to model how

an objective function varies as a function of the parameters of a method. Spearmint uses

the predictive mean and uncertainty of a Gaussian process over the parameter-space to

choose candidate parameter settings for evaluation.

Here I used the average AUCFPR statistic across all the benchmark/TF combinations

as the objective function. For each evaluation of the objective function the number of

test cases per combination was down-sampled to 500 so that the spearmint algorithm

could complete in a reasonable time. This down-sampling adds noise to the objective

function. However, spearmint’s model of the objective function incorporates a noise

term and should adapt to this noise. After evaluating 215 different parameter settings,

spearmint chose as optimal a background prior of 0.983 and a UFE prior of 301 without

automatic learning of the prior values. These are the settings I have used in the following

unless otherwise stated.

Optimisation of BiFA parameters

Each test case is around 20Kb in length and hence is unsuitable for a direct application

of the BiFA algorithm (see Section 2.3.2). I partitioned each test case up into chunks
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using the multiple alignment and applied the BiFA algorithm to each chunk. I treated

the size of the chunks as a parameter of the BiFA method.

I used the spearmint tool to optimise four parameters for the BiFA method: the prior

odds; the phylogenetic threshold; the chunk size; and the choice of update method

(see Section 2.3.1). After 202 evaluations of the objective function spearmint chose the

following optimal parameters: prior odds of 10−5.5; a phylogenetic threshold of 10−6; a

chunk size of 155bp and to use the original rather than the modified update method. I

use these parameters in all that follows unless otherwise stated.

It was disappointing that spearmint chose not to use the modified update method;

however the second best parameters evaluated did use the modified update method.

Their average AUCFPR was only 1.1× 10−5 lower than the optimal parameters. Later

on I directly compare the modified and original update methods.

Optimisation of FIMO parameters

FIMO only has one relevant parameter to optimise: a pseudo-count that is added to the

PWM. I chose several different pseudo-counts and evaluated FIMO using each value.

I used a range of values above and below the default value of 0.1 including 0.8, the

value recommended by Nishida et al. in their study of the effect of pseudo-counts on

the performance of TFBS prediction methods [Nishida et al., 2008]. The results are

scatter-plotted in Figure 2.7. I found the most variation in AUCFPR occurred in the

H̊andstad sites benchmark. Both the modENCODE and turnover benchmarks were less

affected by the pseudo-counts. Nishida et al. highlighted a possible relationship between

the optimal pseudo-count and the information content of the PWM. The scatter plot

suggests that low (respectively high) pseudo-counts may be more suitable for PWMs

with low (respectively high) information contents. As the linear models fitted in the

plot suggested higher pseudo-counts (especially 5) might perform best, I tested if the

AUCFPR for the pseudo-count of 5 were significantly greater at the 0.05 level than those

of pseudo-counts of 1.5, 1 and 0.8 using a one-sided Wilcoxon paired signed-rank test.

They were not (p-values of 0.14, 0.16 and 0.10 respectively). Hence I followed Nishida

et al.’s recommendation: all further FIMO results in this study use a pseudo-count of

0.8.

Method comparison

Having established optimal parameter settings for the four algorithms in the comparison,

I plotted ROC curves and made a comparison of each using AUCFPR statistics across

all benchmark/TF/method combinations. All the ROC curves are given in Appendix A.
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Figure 2.7: The effect of choosing different pseudo-counts for the FIMO algorithm.
A scatter plot of information content of the PWM against deviation from the mean
AUCFPR for that benchmark/TF combination. Each pseudo-count/benchmark/TF
combination is a separate point coloured by pseudo-count and shaped according to the
benchmark. The lines show linear models fitted for each pseudo-count.

The AUCFPR statistics are plotted in Figure 2.8. I used a one-sided Wilcoxon paired

signed-rank test to investigate which methods performed better at the 0.05 significance

level and give the results in Table 2.4. FIMO is dominated by all three other methods and

MotEvo dominates all three other methods. The significance test does not discriminate

between the performance of MONKEY and BiFA.

Further to these pair-wise comparisons of methods, I investigated what correlation there

was between method performance and the information content of the PWMs. The
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FIMO BiFA MONKEY
BiFA 0.018 0.9

MONKEY 0.0063 0.11
MotEvo 0.001 0.0069 0.028

Table 2.4: One-sided Wilcoxon paired signed-rank test p-values to compare method
AUCFPR performance. The p-value is the result of a test whether the method of the
row has better AUCFPR statistics than the method of the column. Empty cells represent
tests that were not performed. A bold font indicates the test is significant at the 0.05
level.

results are plotted in Figure 2.9. The most striking features of the plot are that the

phylogenetic methods, BiFA, MONKEY and MotEvo perform relatively well on PWMs

of lower information content. In contrast the non-phylogenetic method FIMO does

better on PWMs of higher information content. This is in agreement with the findings of

H̊andstad et al. Most of the variation in the plot is from the H̊andstad sites benchmark:

the benchmarks from Drosophila are more tightly clustered. The fitted linear models

do not show the dominance of MotEvo as clearly as the significance tests as they are

heavily influenced by the statistics for the outlying NRSF PWM that has an information

content above 25 bits.

I investigated the outliers from the comparison more closely. I define outliers as in

the box plots in this chapter: any AUCFPR more than 1.5 times the IQR away from

the nearest of the first or third quartiles. FIMO had three outliers which were all low

AUCFPRs: both cell lines of E2F4 data and the c-Fos data from the HeLa-S3 cell

line. E2F4 has a palindromic short CG-rich PWM with the second lowest information

content of all the PWMs in the study (see Figure 2.1). The ROC curves in Figures 2.10

and 2.11 show that FIMO is disadvantaged by my (and H̊andstad et al.’s) cautious

policy of handling ties of scores (see Section 1.3.10). To see why, note that the FIMO

ROC curves for E2F4 and E2F4-hela start as step functions. The first step represents

those positive and negative sub-regions of the test cases where there was a perfect match

for the consensus sequence of E2F4. However, these steps cover the FPR=5% threshold

for the AUCFPR statistic. The cautious tie-handling policy assigns an AUCFPR of 0 to

FIMO. An agnostic tie-handling policy would result in a diagonal line instead of a step.

Under this policy FIMO would have approximately the same AUCFPR as MONKEY

in both cases. To understand why this affects FIMO more than the other methods,

consider that the shorter a PWM is, the more perfect matches there will be to its

consensus sequence in the central sequences. However, the phylogenetic methods have

the related sequences to analyse. Variation in these related sequences means that their

scores will take more distinct values than those of FIMO. This leads to the steps in their

ROC curves being much thinner giving a more diagonal shape and higher AUCFPR.
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Figure 2.8: The AUCFPR statistics for the four methods. The box plots represent the
deviation from the AUCFPR mean for each TF/benchmark combination. The methods
are sorted by their median deviation. If sorted by their mean deviation, the BiFA and
MONKEY algorithms would swap positions.

Hence there is a bias against FIMO in the AUCFPR and AUC statistics.

The BiFA algorithm had four outliers: two positive outliers for E2F4 in both cell lines

(see Figure 2.10) and two negative outliers for MAX and NRSF (see Figure 2.12). MON-

KEY’s outliers were E2F4 (both cell lines) and NRSF in the negative direction and c-Fos

(both cell lines) and c-Jun in the positive direction. MotEvo’s only outliers were E2F4

(both cell lines) in the positive direction.
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Figure 2.9: Relationship of AUCFPR statistics for the four methods with information
content. The deviation from the AUCFPR mean for each TF/benchmark combination
is plotted against the information content in bits of the PWM. Each method is identified
by colour and has a fitted linear model shown. The shapes identify which benchmark
the deviation is from.

BiFA update method

In the description of the BiFA algorithm, I presented two different methods for updating

BiFA’s belief that there is a TFBS in the central sequence using evidence from the related

sequences (see Section 2.3.1). When optimising the BiFA parameters, spearmint chose

to use the original updates. I wanted to test how much difference the choice of update

method makes to the AUCFPR over all the test cases. I ran BiFA once with each method

and calculated the AUCFPR. The differences between the AUCFPR statistics for each
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Figure 2.10: ROC curves for the TF E2F4 from the H̊andstad sites benchmark. Left : the
ROC curve for the K562 cell line. Right : the ROC curve for the HeLa-S3 cell line.
The feint vertical lines show the FPR=5% threshold. The black dotted lines show the
expected performance of a random classifier.

Figure 2.11: ROC curves for the TF c-Fos from the H̊andstad sites benchmark. Left : the
ROC curve for the K562 cell line. Right : the ROC curve for the HeLa-S3 cell line.
The feint vertical lines show the FPR=5% threshold. The black dotted lines show the
expected performance of a random classifier.
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Figure 2.12: ROC curves for the TFs MAX and NRSF from the H̊andstad sites bench-
mark. Left : the ROC curve for MAX. Right : the ROC curve for NRSF. The x-axis is
scaled to show FPRs between 0% and 10%. The feint vertical lines show the FPR=5%
threshold. The black dotted lines show the expected performance of a random classifier.

benchmark/TF combination are quite small (of the order of 0.1%). Nevertheless, I

evaluated both update methods against each other using two one-sided Wilcoxon paired

signed-rank tests. Neither method was significantly better at the 0.05 level: p-values of

0.3 (respectively 0.7) for the test of whether modified update method was better than the

original (respectively vice versa). The AUCFPR deviations are plotted in Figure 2.13

in relation to the information content of the PWMs.

Effect of alignment size

I ran the BiFA, MONKEY and MotEvo methods on alignments of two, three and five

species on the H̊andstad sites and modENCODE benchmarks. I did not use the turnover

benchmark for this comparison as it only has two species. Box plots of the AUCFPR

statistics are shown in Figure 2.14. There are two trends evident: firstly MotEvo out-

performs MONKEY which outperforms BiFA and secondly all three methods perform

better with fewer sequences in the alignment.

I examined the difference in AUCFPR between alignments of two and five species for each

benchmark/TF/method combination in relation to the information content of the TF’s

PWM. The results are scatter-plotted in Figure 2.15. For most benchmark/TF/method

combinations, performance was degraded when adding species to the alignment. How-

ever, there is a negative correlation with information content and the BiFA method
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Figure 2.13: Relationship of AUCFPR statistics for the two different BiFA update
methods with information content. The deviation from the AUCFPR mean for each
TF/benchmark combination is plotted against the information content in bits of the
PWM. Each update method is identified by colour. The shapes identify which bench-
mark the deviation is from.

shows this effect most strongly.

I tested whether each of the BiFA, MONKEY and MotEvo methods performed better

with two species than five using a one-sided Wilcoxon paired signed-rank test. At the

0.05 significance level, both MONKEY and MotEvo do perform better with fewer species

(p-values of 0.00021 and 0.027 respectively) but BiFA does not (p-value of 0.35).

I decided to investigate a particular test case for which this difference was most marked.

I looked for the test case which had the largest drop in AUCFPR between the MotEvo



CHAPTER 2. PREDICTING BINDING SITES 75

●●●

●●●● ●

●●

●●

●

●●

● ●●

2

3

5

2

3

5

2

3

5

B
iFA

M
O

N
K

E
Y

M
otE

vo

−0.010 −0.005 0.000 0.005
AUCFPR deviation from benchmark/TF mean

# 
sp

ec
ie

s

Figure 2.14: AUCFPRs for the BiFA, MONKEY and MotEvo methods on alignments
of two, three and five species. The mean of all the AUCFPRs for each benchmark/TF
combination is calculated. The box plots show the deviations from this mean for each
combination of method with number of species.

method with two species and with five species. Whilst this extreme example may not be

typical of the differences when the number of species is varied, I hoped it would provide

some insight. This test case is for the knirps TF from the modENCODE benchmark

and starts at position 11.535,473 of chromosome chr2R. On closer inspection of this

locus and MotEvo’s predictions on the two-way and five-way multiple alignments of it,

I determined that a strong putative TFBS for knirps was being ignored in the five-way

alignment and that this was responsible for the loss of AUCFPR. The alignment and

TFBS are shown in Figure 2.16. The alignment of the TFBS in the three extra species
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Figure 2.15: Relationship between change in AUCFPR when increasing alignment size
from two species to five and the information content of the TF’s PWM in bits. Each
point represents a benchmark/TF/method combination. The x-axis shows the informa-
tion content of the PWM for the TF. The y-axis shows the improvement in AUCFPR
when moving from an alignment of two species to an alignment of five species. That
is positive values represent combinations for which including more species in the align-
ment improved the performance of the method. The lines show linear models fit to each
method.
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contains a gap at the penultimate base. MotEvo will not consider TFBSs in species

for which the alignment contains a gap. It is easy to see that despite these gaps, a

strong putative TFBS exists in all five sequences. Even if the extra three sequences had

significant substitutions and the TFBS was almost erased in them, I would argue there is

hardly much less evidence for the TFBS than in the two-species alignment. MotEvo was

designed to allow for site loss between species and this is presented as one of its features

in its publication. The drop in posterior probability for this one TFBS does not seem

consistent with this design. This TFBS seems to highlight two potential problems with

the MotEvo algorithm: firstly, it ignores aligned TFBSs which have almost insignificant

gaps in them and secondly, the reported posterior probability of a TFBS can drop more

quickly than seems reasonable when TFBSs are missing in related sequences.

dm GGGG---CG-TGT-GGTTCTAAACTAGACTAACAGATAGGTTTCTTCG-ATT

droWil -------AA-TTG-GGTTCTAAACTAAACT-ACAGACAAGTTTCTTCGTTTT

droVir TTATCTATA-GTT-GGTTCTAAACTAGACT-AC-TACAAGTTTCTTCG-ATT

droYak GTGT---CG-GGT-GGTTCTAAACTAGACTAACAGATAGGTTTCTTCG-ATT

dp -------GA-TTT-GGTTCTAAGCTAGACT-ACAGACATGTTTCTTCG-AAT

Figure 2.16: A putative knirps TFBS inside a positive sub-region of a test case for
which MotEvo weakens its prediction when more species are added to the alignment.
Drosophila melanogaster (dm) and Drosophila yakuba (droYak) are the species in the
two-way alignment with which MotEvo scores the TFBS relatively highly (posterior
probability=0.033). When the other three species are included in the alignment, MotEvo
scores the TFBS relatively lowly (posterior probability=0.00068). Top: a five-way mul-
tiple alignment, those species that are only in the five-way alignment are coloured red,
those species that are in both the two-way and five-way alignment are coloured blue. 13
bases from the aligned T are coloured in each sequence. Note the gap in the putative
TFBS in the three extra species. Bottom: PWM for the TF knirps (13bp).

2.4.5 Discussion

Decoding transcriptional regulatory networks is difficult and has only been attempted

for a small fraction of networks. One source of relevant data is the conservation of TF-

BSs across related species. The evolutionary pressures on this conservation are not well

understood. Phenomenon such as TFBS turnover through site gain, loss or movement

have been identified but we do not know how prevalent these events are. One way we

can investigate these effects is through the evaluation of models of this phenomenon,
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using predictive performance of the models on experimental data as a proxy for model

accuracy. The idea is that models that perform well capture an inherent facet of the evo-

lutionary pressures involved. The implementation of a benchmark framework including

three large data sets for two model organisms enabled the investigation of many issues

related to phylogenetic TFBS prediction. I believe using a framework of this size and

variety is essential to determine which models of phylogenetic conservation of TFBSs

perform best in a prediction setting.

If evolutionary pressures on transcriptional regulatory networks and TFBSs varied be-

tween genera, some methods might be more suited to the analysis of data from particular

genera. No such systematic variation in performance that correlated with the two species

or the three benchmarks was apparent. This supports the hypothesis that the evolu-

tionary pressures on transcriptional regulatory networks that our models can detect are

similar across genera.

Phylogenetic vs. non-phylogenetic

The first point to note from the results of the comparison is that phylogenetic methods

perform better than FIMO, the non-phylogenetic method studied. This comes with a

proviso that the method of calculating the AUCFPR statistics is biased against methods

such as FIMO whose distribution of possible scores has narrower support. Visual in-

spection of the ROC curves in Appendix A reveals that the picture is not as clear as the

Wilcoxon tests of the AUCFPR statistics suggest. I used the same policy as H̊andstad

et al. to break ties and calculate AUC statistics. H̊andstad et al. also noted that this

bias might exist although they did not publish all the ROC curves from which their

statistics are generated. They showed curves for E2F4 in which the bias is evident and

curves for NRSF which do not display the bias as expected for a longer PWM. Their

claim that phylogenetic methods perform better on short and information-poor PWMs

covers exactly the cases where the bias is strongest. Hence further work is needed to

either confirm the effect or establish if it is an artefact of this bias.

Supposing that the bias is not too strong, the results of this study broadly agree with

H̊andstad et al.’s claim that phylogenetic methods are to be preferred when the PWM

is short or information-poor. However, we found that MotEvo appeared to perform as

well as FIMO on information-rich PWMs (for example see the ROC curves for NRSF,

NFκB and Max in Appendix A.1). MotEvo allows for site loss between species and this

is consistent with its comparable performance to FIMO on these TFs. Both MONKEY

and the BiFA algorithm heavily penalise TFBSs that have been lost in related sequences.

This is a likely cause of their poor performance on information-rich PWMs.
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Aligned vs. alignment-free

Of the phylogenetic methods, BiFA is the only alignment-free method. MONKEY and

MotEvo score putative TFBSs by directly examining the aligned segments of the related

sequences for matches to the PWM. Conservation of a putative TFBS across many

species is certainly strong evidence that it is functional. However, there is a growing

body of evidence that points to frequent site turnover (loss, gain and movement) between

closely related species. Both MONKEY and MotEvo penalise such turnover (MONKEY

more than MotEvo). Their advantage lies in identifying lower substitution rates at

putative TFBSs than at surrounding neutrally evolving sequence. The BiFA algorithm’s

ability to model site turnover does not seem to compensate for the disadvantage of not

using the alignment directly. This study has not been able to quantify how important

these two effects are. This would be easiest using a single model that incorporated both

concepts.

Alignment-free methods do have a practical advantage over those that require align-

ments. The BiFA algorithm just needs the central and related sequences as input. Both

MONKEY and MotEvo require the specification of a phylogenetic tree with branch

lengths and a multiple alignment. Multiple alignments for model organisms are readily

available from the UCSC browser. Phylogenetic trees with branch lengths can be more

difficult to come by. Both tools have fairly strict requirements on how these are pre-

sented to the algorithm (MONKEY especially). Conversion of the tree and alignment

into the correct format can be error-prone and time-consuming.

Simple models of TFBS conservation

There is some evidence that methods based on simple models of TFBS conservation

perform well. In my tests, MONKEY’s simple model surpassed the more complicated

evolutionary models. MONKEY’s simple model is equivalent to averaging log Bayes

factors across the TFBS alignment (c.f. the BiFA algorithm). All information about

evolutionary substitution rates and phylogenetic distances is ignored by this model. The

WS method in H̊andstad et al.’s work is very similar: a weighted average of the log-

likelihood scores where the weights are a function of the branch lengths. The WS method

uses the highest score in a window around the aligned TFBS in the related sequences.

This window technique is presumably less sensitive to problems of mis-alignments. The

WS method was better than BBLS when evaluated at all thresholds using the AUC

statistic. It may not have performed so well with the AUC50 statistic due to the bias

highlighted earlier. In Xie et al.’s evaluation of their BBLS method, they compare it

to a method that simply reports TFBSs that are conserved across human, mouse and
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rat at some PWM-specific threshold. On some of their data sets this score performs

comparably to BBLS. To summarise, most evaluations of complex phylogenetic TFBS

predictors have not proven their superiority to simpler methods, either in general or on

a subset of TFs.

Effect of alignment size

Interestingly, I did not discover that increasing the number of species in the alignment

significantly improved the performance of any of the phylogenetic methods. Indeed,

I found the opposite for MONKEY and MotEvo: their performance significantly de-

creased. The authors of neither method studied this effect directly in their publications,

nor did H̊andstad et al. in their comparison. The authors of MotEvo presented some

evidence that their method improves when given more aligned sequences. MotEvo can

be used as an enhancer predictor by looking for cluster of TFBSs. The authors showed

that MotEvo’s performance at this task improved on alignments of more species.

The performance decrease is disturbing in that the availability of more information to

an algorithm should not degrade its performance. This effect suggests the PMM models

in MONKEY and MotEvo can be improved upon. Perhaps the simplest explanation is

that the performance decrease could be caused by over-penalising the loss of sites. As

more species are added to an alignment, the chance that a site is lost in one or more

species (or that there is a mis-alignment) grows. If a method is overly sensitive to this

loss it may perform worse on these larger alignments.

Consistency with previous evaluations

There have been two dedicated evaluations of phylogenetic TFBS predictors [Hawkins

et al., 2009, H̊andstad et al., 2011]. Also, the publications of the methods described

earlier all present some comparison of their methods with other TFBS prediction meth-

ods. In this section I discuss how my results relate to the results in these evaluations. I

have already discussed how the results in this thesis relate to H̊andstad et al.’s results

in Section 2.4.5 above.

Hawkins et al.’s work was on yeast data. They found that phylogenetic methods were

worse than non-phylogenetic methods at predicting known sites. They argued this

could be because of missing weak TFBSs. They used a column-shuffling technique to

estimate a minimum FDR for different methods at different thresholds. They found

that MONKEY outperformed a non-phylogenetic method, consistent with the results

from my study.
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MotEvo’s authors evaluated their method against MONKEY and PhyloScan on data

for five human TFs. As I did, they found MotEvo performed significantly better than

MONKEY. They showed that MotEvo’s ability to predict enhancers increased as more

sequences were added to the alignment. As noted above, my results suggest MotEvo’s

performance decreases as more sequences are aligned which is in contrast to their en-

hancer predicting results. This certainly bears further investigation. MotEvo’s authors

chose to use seven species in their evaluations. Considering the methods’ models of site

loss, this may have disadvantaged MONKEY more than MotEvo.

The disparity between the conclusions drawn from separate evaluations of phylogenetic

TFBS predictors highlights how much is unknown about TF binding. On the one hand,

complex aligned methods are reported as out-performing other simpler methods. On

the other hand, a closer look at the statistics reveals a more complicated picture where

simpler methods can surpass more complex models. Ultimately I expect continued

iterations of model checking via predictive performance and model updating will help

us understand how TFBSs evolve.

2.4.6 Further work

There is much work that could be done to further investigate models of TFBS conser-

vation. I describe some ideas in this section.

Improving the benchmarks

In terms of this benchmark framework, I think the priority must be to re-analyse the

methods’ performances using a more equitable policy to break tied scores. Whilst a bias

exists against non-phylogenetic or simpler methods, no firm conclusions can be drawn.

The BBLS method performed very well in Xie et al.’s evaluation. It is probably the

strongest candidate for the next method to include in the framework although there are

others such as rMonkey, PhyloScan and some of the simpler methods such as WS.

Integration of the data sets that have already been used for comparison of methods

would allow my results to be directly compared to those evaluations. In addition, using

data from other model organisms such as Arabidopsis, bacteria, yeast, Caenorhabditis

elegans and mouse would add more weight to the results. There is no longer a shortage

of good experimental binding data in these organisms.

Some of the features of MotEvo, especially its model of competitive binding, require

PWMs for more than one TF for proper evaluation. Similarly the maximal chain ex-

tension to the BiFA algorithm only makes sense when predicting TFBSs for more than
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one TF. The benchmark framework as presented does not implement any tests of this

nature. This is also the context in which most experimentalists will use these methods:

typically, an experiment will suggest a locus in the genome is of interest and an experi-

mentalist will want to scan for TFBSs of any of a number of TFs. Tests where methods

are asked to report which of a number of TFs might bind to a locus would enable better

comparisons of these models.

These multi-TF tests would also help evaluate if method scores are comparable across

PWMs. As mentioned earlier, some PWM scanning approaches use per-PWM thresholds

to assess significance. Methods that report comparable scores across PWMs without

the need for calibration are far more useful. Multi-TF tests would help investigate

how methods perform in this regard. For instance p-values of predictions decrease

monotonically as log-likelihood ratios increase but only on a per-PWM basis: the same

log-likelihood ratio for different PWMs will have a different p-value. The introduction

of more than one PWM into a single test case would allow us to investigate if the

posterior probability of binding methods described in Section 2.1.2 are better calibrated

for comparison than p-value methods.

Hawkins et al. and H̊andstad et al. drew contradictory conclusions regarding whether

phylogenetic TFBS predictors are better at identifying strong or weak TFBSs. Inte-

gration of some measure of TFBS strength into the benchmark framework would allow

this question to be addressed. An obvious choice is the peak height in ChIP-seq data

as H̊andstad et al. have already done.

Improving the methods

The question of how many species to include in an alignment for the purposes of TFBS

prediction has not been answered in any work to date. This could be because perfor-

mance appears to suffer as the number of species increases. Understanding which models

perform best with more sequences is key to identifying models that capture how TFBSs

evolve. Similarly, the question of which evolutionary distances are optimal for use in

TFBS prediction has not been addressed. Some recent work has identified liver-specific

and heart-specific enhancers that are poorly conserved [Blow et al., 2010,Schmidt et al.,

2010,May et al., 2011]. The ideal distances could depend on the type of transcriptional

regulatory network under investigation. Some networks may be shared across large

evolutionary distances, others may be specific to individual species.

To evaluate how well the core BiFA algorithm models billboards and the maximal chain

extension models enhanceosomes, it would be worthwhile to hand-curate a collection of

known billboards and enhanceosomes.
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0-order Markov models do not fit genomic sequences particularly well. Recent work

has shown that models of order up to 7 can be optimal for certain sequence analysis

problems [Narlikar et al., 2013]. I discuss this in more detail in Section 5.3.2. In any

case, although many of the available methods will work with higher-order models, little

work has been done evaluating the methods’ performance when they are used.

Finally, whilst there are clearly some advantages to be had from considering an explicit

alignment and evolutionary model, the PMM methods that take this approach (MON-

KEY and MotEvo) seem too strict in some cases where TFBSs have been lost. On the

one hand, simple log-likelihood based averaging approaches that do not use an alignment

may not penalise these cases so harshly. On the other hand, they are not directly using

information from the alignment about TFBSs that are under evolutionary constraint.

An approach that tries to combine the best of both worlds would be interesting to in-

vestigate. One idea is a consensus meta-method that integrates the output of two or

more methods (perhaps MotEvo and BBLS). Alternatively, perhaps the MotEvo model

could be extended to handle site loss better than it currently does.
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Chapter 3

The STEME motif search algorithm

The work in this chapter has been published in Nucleic Acids Research [Reid and

Wernisch, 2011] under the authorship of myself and my supervisor, Lorenz Wernisch.

My contributions to the paper were the main technical idea for the efficient approxima-

tion, the implementation of this idea, the accuracy and efficiency tests and the majority

of the text of the paper.

3.1 Introduction

MEME [Bailey et al., 1994] is one of the most popular motif finders. It has a long pedi-

gree: the original version was published in 1994. MEME was one of the best performing

motif finders in a comparative benchmark review [Tompa et al., 2005]. MEME has a

large user-base that understand its parameters and trust its results: the primary paper

describing its algorithm is cited over 300 times on PubMed. Unfortunately MEME takes

a prohibitively long time to run on large data sets. The MEME authors acknowledge

this and recommend discarding data from large data sets in order to make run-times

practical. They suggest a limit of 200,000 base pairs on the size of input data set. In our

experience, the users of MEME are not always aware of this advice and can be frustrated

when using MEME on large data sets. In any event, discarding data is a far from ideal

work-around as it necessarily detracts from the power of the method. Hence there is

a need to make MEME and other motif finders more efficient. This chapter details an

efficient approximation to the EM algorithm that is a core component of MEME and

many other motif finders.

Various attempts have been made to speed up MEME in recognition of its poor perfor-

mance on large data sets. The authors of MEME have implemented a parallel version of

MEME, ParaMEME [Grundy et al., 1996]. Other approaches use specialised hardware

85
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such as parallel pattern matching chips on PCI cards [Sandve et al., 2006] or off-loading

the computations onto powerful GPUs [Chen et al., 2008]. All of these techniques require

hardware that is not commonly available to the typical researcher.

In this thesis we propose an alternative route to accelerate MEME by using suffix trees.

A suffix tree [Gusfield, 1997] is a data structure that represents a sequence or set of

sequences. Suffix trees are well suited to algorithms that require efficient access to

subsequences by content rather than by position. They have been used in several

areas of bioinformatics: sequence alignment [Schatz et al., 2007], indexing genome-

scale sequences [Phoophakdee and Zaki, 2008] and short read mapping [Mäkinen et al.,

2010]. They have also been used for combinatorial motif finding [Federico and Pisanti,

2009, Marsan and Sagot, 2000, Pavesi et al., 2001] and scanning for PWMs [Beckstette

et al., 2006]. To the best of our knowledge the work presented here is the first application

of suffix trees to probabilistic motif finding and the EM algorithm in particular.

MEME is not the only motif finding algorithm. Other motif finders have been proposed

specifically for large data sets. One such motif finder is DREME [Bailey, 2011], developed

by an author of MEME. DREME does not use a full probabilistic model: it searches in

the space of IUPAC words for those that discriminate best between an input sequence

set and a background sequence set. It is designed to find short motifs and does not scale

well to find longer motifs.

In Section 3.2 we describe MEME’s algorithm, MEME’s probabilistic model and how

MEME uses the EM algorithm to optimise its parameters. We describe an approxima-

tion to EM and show how suffix trees can be used to implement this approximation.

We call this approximation the Suffix Tree Expectation-Maximisation Motif Elicitation

(STEME) algorithm We analyse the efficiency gains we expect to achieve with this ap-

proximation. We describe our open source implementation of the STEME algorithm. In

Section 3.3 we describe the tests we have done to establish the accuracy and efficiency

of STEME in practice. We examine the effect of varying the motif width and the main

parameter in our algorithm on the accuracy and efficiency. In Section 3.4 we look at

the implications of the results and suggest how our algorithm can be best used. We

conclude with an outlook for future work.

3.2 Materials and methods

3.2.1 MEME

The MEME algorithm is based on a probabilistic model. W -mers in the input sequences

are modelled as a mixture of draws from a background model and a model that represents
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the motif being searched for. MEME uses the EM algorithm to improve the motif model

iteratively. In each iteration, the locations of the binding sites are estimated using the

current model of the motif and the motif is updated using the predicted sites weighted

by their likelihoods. The EM algorithm is guaranteed to converge to a local maximum

of the likelihood function but is very sensitive to initial conditions. To mitigate this

sensitivity, MEME runs the EM algorithm many times from different starting points

(also known as seeds). MEME tests every W -mer in the input sequences as a potential

seed and runs the EM algorithm on the most promising seeds. The work in this chapter

provides an efficient replacement for MEME’s EM algorithm. Efficiently finding the

most promising seeds on large data sets is outside the scope of this work.

MEME’s model

For a particular motif width, W , MEME treats every subsequence of length W (hence-

forth W -mer) in the data independently. Given a motif width, W , MEME models each

W -mer in the sequences as an independent draw from a two-component mixture. One

mixture component models the background sequence composition, the other models

binding sites. The binary latent variables, Z = {Z1, . . . , ZN}, indicate whether each

W -mer, Xn, is drawn from the background component or the binding site component.

MEME has several different variants of its model which the user can choose between.

They vary in how the sites are distributed amongst the sequences. The oops variant

insists that there is exactly One Occurrence Per Sequence. For most experimental data

this is not a realistic assumption and those sequences that do not contain a site can

reduce MEME’s ability to find the motif. The zoops variant allows Zero or One Occur-

rences Per Sequence. This is more plausible for most experimental data sets but will not

take statistical strength from more than one site in a sequence. The anr variant allows

any number of binding sites in each sequence. This variant is the most flexible and is

the most suitable for most applications. However, it is also the most computationally

demanding: care must be taken in the algorithm when sites overlap otherwise MEME

will tend to converge on self-overlapping motifs. This is because MEME’s assumption

that the W -mers are independent breaks down as each W -mer will overlap with up to

2(W − 1) other W -mers. Nevertheless, as homotypic clusters of binding sites are com-

mon in transcriptional networks, we will focus on this anr variant in the rest of this

chapter.

In the anr variant the background component is modelled using a Markov model pa-

rameterised by θBG, the binding site component is modelled by a position-weight matrix

parameterised by θBS, and λ parameterises the probability that any given W -mer is
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XnZn
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Figure 3.1: MEME’s model: λ, the prior probability of a binding site; Zn, the hidden
variable representing whether the n’th W -mer is an instance of the motif; Xn, the
n’th W -mer; θBS, the parameters of the motif; θBG, the parameters of the background
distribution.

drawn from the binding site component. Thus the model is

p(Zn = 1|λ) = λ (3.1)

p(Xn|Zn, θBG, θBS) = p(Xn|θBS)Znp(Xn|θBG)1−Zn (3.2)

where {X1, . . . , XN} are the W-mers and {Z1, . . . , ZN} are latent variables indicating

whether the W-mers are drawn from the background or binding site model. This gives

the joint distribution

p(X,Z|λ, θBG, θBS)

=
N∏
n=1

p(Zn|λ)p(Xn|Zn, θBG, θBS)

=
N∏
n=1

[λp(Xn|θBS)]Zn [(1− λ)p(Xn|θBG)]1−Zn (3.3)

The model is depicted in plate notation in Figure 3.1.

Expectation maximisation

In the E-step of expectation maximisation MEME derives the expected value of the

log-likelihood, LL, w.r.t. the latent variables, Z, given the current parameter estimates,

θ = {θBS, θBG, λ}. All expectations, 〈.〉Z|θ, are w.r.t. Z|θ unless specified.

〈LL〉 = 〈log p(X,Z|λ, θBG, θBS)〉 (3.4)

=
N∑
n=1

〈Zn〉 log[λp(Xn|θBS)]

+(1− 〈Zn〉) log[(1− λ)p(Xn|θBG)] (3.5)
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From Equation (3.3) and an application of Bayes’ theorem

〈Zn〉 =
λp(Xn|θBS)

λp(Xn|θBS) + (1− λ)p(Xn|θBG)
(3.6)

The M-step maximises the expected log-likelihood w.r.t. each parameter in turn to

calculate their new estimates. On inspection of (3.5) we can see

λ 7→ arg max
λ

∑
n

〈Zn〉 log λ+ (1− 〈Zn〉) log(1− λ)

=

∑
n〈Zn〉
N

(3.7)

θBS 7→ arg max
θBS

∑
n

〈Zn〉 log p(Xn|θBS) (3.8)

θBG 7→ arg max
θBG

∑
n

(1− 〈Zn〉) log p(Xn|θBG) (3.9)

MEME uses a PWM model for binding sites where θBS = {θwb}. θwb parameterises the

probability of seeing base b at position w in a TFBS.

p(Xn|θBS) =
∏
w

θwXnw (3.10)

Here Xnw is the wth base of the n’th W -mer. The update equations are

θwb 7→
∑

n〈Zn〉I(Xnw = b)∑
n〈Zn〉

=
cwb
S

(3.11)

where cwb =
∑

n〈Zn〉I(Xnw = b) is the expected number of times we see base b at

position w in a binding site and S =
∑

n〈Zn〉 is the expected number of binding sites

MEME uses a 0-order Markov model for θBG. This is updated by the expected counts

of the bases which are not in binding sites.

If MEME just used the EM algorithm as described above to update its estimates of the

〈Zn〉 it would run into problems when the estimate of the motif allows for overlapping

instances. For instance, suppose that there are 12 consecutive As in the data and the

current estimate of the motif models binding sites of 8 consecutive As. MEME would

assign 〈Zn〉 ≈ 1 to the five 8-mers in the consecutive As. The sum of the window. To

avoid this situation MEME’s algorithm leaves the highest 〈Zn〉 unchanged and scales the

others down so that they sum to at most 1. Without this adjustment, repetitive sections

in the input sequences can cause MEME to converge on motifs of low complexity that

have frequently overlapping binding sites.
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Expected running time

Each iteration of MEME’s EM algorithm evaluates the current estimate of the motif on

each W -mer taking O(NW ). The algorithm to adjust for overlaps also runs in O(NW )

time hence an iteration of EM completes in O(NW ) time. However, it should be noted

MEME’s algorithm as a whole is quadratic in N as the number of seeds is proportional

to N .

3.2.2 Approximation to EM

The updates in the M-step of the EM algorithm all involve sums of the form
∑

n〈Zn〉 . . .
where n ranges over all W -mers in the data set. In any given iteration of EM, depending

largely on the current θBS, most of these 〈Zn〉 will be negligible. We can make an

approximate M-step by ignoring those n for which 〈Zn〉 is small. We formalise this by

defining a subset of the n thresholded by 〈Zn〉

Tδ = {n : 〈Zn〉 ≥ δ, 1 ≤ n ≤ N} (3.12)

Intuitively, Tδ indexes those W -mers that match our current motif estimate. As an

approximation to Equation (3.11) we define θ̂wb, ĉwb, Ŝ

θ̂wb =

∑
n∈Tδ〈Zn〉I(Xnw = b)∑

n∈Tδ〈Zn〉
=
ĉwb

Ŝ
(3.13)

For convenience of notation we define c̄wb =
∑

n/∈Tδ〈Zn〉I(Xnw = b), S̄ =
∑

n/∈Tδ〈Zn〉,
and N̄ = N − |Tδ| so that

cwb = ĉwb + c̄wb

S = Ŝ + S̄

N = |Tδ|+ N̄

The relative error, εδ, in our approximation θ̂wb of θwb is

εδ =
θwb − θ̂wb

θwb
=
cwb − S

Ŝ
ĉwb

cwb

cwbεδ = c̄wb −
(
S

Ŝ
− 1

)
ĉwb = c̄wb −

S̄

Ŝ
ĉwb
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Noting that S̄

Ŝ
and all the counts, c, are positive

|εδ| ≤ max

{
c̄wb
cwb

,
S̄ĉwb

Ŝcwb

}
(3.14)

We know from the definition of Tδ that S̄ ≤ δN̄ and that c̄wb ≤ δN̄

|εδ| ≤ max

{
δN̄

ĉwb
,
δN̄

Ŝ

}
≤ δN

ĉwb
(3.15)

So δ ≥ |εδ|ĉwb
N

. If we knew ĉwb we would know which δ would guarantee our desired

bound in the motif estimation relative error. Unfortunately at the beginning of an EM

iteration when we want to choose δ we do not know ĉwb. In practice this is not a problem.

Given λ and the current motif parameters we can estimate ĉwb fairly accurately. When

the EM iteration has completed, ĉwb is available. We can check the above equations to

ensure that the relative error is less than |εδ|. If it is not, we can calculate a new δ for

which the relative error is guaranteed to be small enough and re-run the iteration. In

our tests this was never necessary. Also ĉwb tends to change slowly over iterations, this

makes its estimation straightforward in all but the first iteration.

3.2.3 Suffix trees

A suffix tree is a data structure that stores a sequence or a set of sequences. Typically,

sequences are stored as contiguous buffers. This permits fast access to subsequences

indexed by their position. Suffix trees are alternative data structures that allow efficient

access to subsequences by their content. Re-writing algorithms to use suffix trees can

often achieve significant efficiencies.

Suppose we have a sequence, Y = y1 . . . yT . A suffix of Y is any subsequence, yt . . . yT ,

that ends at yT . A suffix tree stores every suffix of the given sequence(s) in a tree

structure. An example of a suffix tree is shown in Figure 3.2. Now we show how to

iterate over all the subsequences of length W in Y (the W -mers). Each such W -mer is

the start of a suffix. Hence descending the tree to depth W iterates over all the W -mers.

If two W -mers have the same content, they will be represented once by the same path

in the tree. Contrast this with the random-access of a typical contiguous buffer data

structure for sequence storage. A contiguous buffer permits fast random access to a

W -mer at a given position but takes no account of identical or similar W -mers. If we

have an application where we are not interested in the position of the W -mers, a suffix

tree can be a more efficient data structure to iterate over them.

Another attractive property of suffix trees is that they can be constructed in linear time
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Figure 3.2: A suffix tree that represents the sequence “BANANA”. The beginning of
a suffix is represented by the ˆ symbol and $ is a termination symbol. Note that the
subsequence “ANA” occurs twice in the sequence but is represented once in the tree.

and space [McCreight, 1976, Ukkonen, 1995, Giegerich and Kurtz, 1997]. One might

suppose that when the sequence has T distinct characters, constructing a suffix tree

might take O(T 2) time as the distinct suffixes have sizes T, T − 1, . . . , 1, 0. However,

each edge in the suffix tree need not be labelled with the entire part of the suffix it

represents. It can be labelled with a start and end index into the sequence in O(1)

time and O(1) space. This leads to construction algorithms that are O(T ) in time

and space. Despite the simplicity of this idea, efficient suffix tree construction is not

straightforward and is the subject of much ongoing research. In particular, techniques

to efficiently index genome sized sequences have recently been developed [Phoophakdee

and Zaki, 2008,Barsky et al., 2008,Barsky et al., 2009,Mansour et al., 2011].

Suffix tree EM efficiencies

The EM algorithm must visit every W -mer in the sequences once on each iteration. By

using a suffix tree to enumerate all the W -mers we immediately achieve two efficiency

improvements. Firstly, if any two W -mers are identical, the 〈Zn〉 calculations are equiv-

alent and we do not repeat them. Secondly as we descend the suffix tree to enumerate

the W -mers, we make partial evaluations of our current motif on what we have seen of

the W -mer so far. These partial evaluations are shared across all the W -mers below

the current node in the tree. On the other hand MEME evaluates every base in each

W -mer once.



CHAPTER 3. THE STEME MOTIF SEARCH ALGORITHM 93

0.0

1.0

2.0

b
it
s

TTACTCGTCCAGTGCAA

G

G

G

G

G

T

T

T

T

TA

A

A

A

A

C

C

C

ˆ

C

C

Figure 3.3: An illustration of how the STEME branch-and-bound algorithm works.
Top: The current estimate of the motif in the EM algorithm. This is actually the motif
for Stat5 from the TRANSFAC database (M00223). Bottom: Part of the suffix tree
representing the sequences. We can see that if we have descended the tree to the node
that represents the prefix, GCAT, our match to the motif is poor. If the bound for the
〈Zn〉 of all the nodes below this is small enough, we can stop our descent here.

3.2.4 Branch-and-bound

Recall from Equation (3.12) that we need to identify all n with 〈Zn〉 ≥ δ for a given δ.

We iterate over the W -mers by descending the suffix tree. Suppose we have an upper

bound on the 〈Zn〉 of all the W -mers below any node. If this bound is below δ, then

we can ignore the entire branch of the suffix tree below the node. In this way we avoid

evaluating large parts of the tree that do not fit the current estimate of the motif well.

We illustrate the idea in Figure 3.3.

We define Xw−
n as the prefix of Xn of length w and Xw+

n as the suffix of length W − w
(so that Xn = Xw−

n Xw+
n ). We can write the likelihoods of the Xn in terms of their

prefixes and suffixes

p(Xn|θBS) = p(Xw−
n |θBS)p(Xw+

n |θBS)

p(Xn|θBG) = p(Xw−
n |θBG)p(Xw+

n |θBG)

We can enumerate the W -mers in the data by descending a suffix tree. Each node we

visit represents the prefix of all of the W -mers below it. Given our binding site and

background models we can calculate the p(Xw−
n |θBS) and p(Xw−

n |θBG) exactly. Sup-
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pose we can also bound p(Xw+
n |θBS) from above and p(Xw+

n |θBG) from below. Re-

calling (3.6) we can use these bounds to bound 〈Zn〉 above. In more detail, suppose

p(Xw+
n |θBS) ≤ p(Xw+

n |θBS) and p(Xw+
n |θBG) ≥ p(Xw+

n |θBG) then using 0 as a lower

bound for p(Xw+
n |θBS) we have

〈Zn〉 ≤ 〈Zn〉 =
λp(Xw−

n |θBS)p(Xw+
n |θBS)

(1− λ)p(Xw−
n |θBG)p(Xw+

n |θBG)
(3.16)

The upper bounds, p(Xw+
n |θBS) are easy to calculate from θBS. In practice the back-

ground model does not change very much over the course of the EM algorithm as only

a small fraction of the base pairs are explained as binding sites. Therefore we keep the

background model fixed and precompute the lower bounds, p(Xw+
n |θBG), in an initiali-

sation step.

3.2.5 Expected efficiencies

In order to understand the computational savings this approximation achieves we give

an analysis of a simplified example. We investigate the expected fraction of nodes we

ignore at each depth in our descent of the suffix tree.

Suppose our current estimate of the PWM has a preferred base at each position. Each

preferred base has probability a and the other three bases at each position are equally

likely with probability 1−a
3

. When a = 1 our PWM is equivalent to a consensus sequence,

when a = 1
4

our PWM has a uniform distribution. As ĉwb ≈ λNa we set δ = ελa

where ε is the maximum relative error we will tolerate. Suppose also our background

model is a uniform 0-order Markov model, then p(Xn|θBG) = 4−W . As 1 ≈ 1 − λ and

recalling (3.16), we want to know when the following holds

〈Zn〉 ≤ 〈Zn〉 =
λp(Xw−

n |θBS)aW−w

4−W
≤ δ = ελa

Let Y be the number of preferred bases in Xw−
n . Assuming that Xw−

n is drawn from

our background distribution we have Y ∼ Binomial(w, 1
4
). Now log p(Xw−

n |θBS) =

Y log a+ (w − Y ) log 1−a
3

. Hence whenever

Y ≤ log ε−W log 4− (W − 1) log a

log a− log(1− a) + log 3
+ w (3.17)

we can ignore all the nodes with prefix Xw−
n . For any given values of ε, W , and a, the

expected fraction of nodes ignored at depth w is the probability that Equation (3.17)

holds. As Y is distributed according to a binomial distribution, these values can be read
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directly from the binomial cumulative distribution function. We plot these expected

fractions for some parameter values in Figure 3.4.
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Figure 3.4: The probability of discarding a W -mer drawn from a uniform 0-order Markov
background at different depths, w, in the suffix tree. Here we used ε = .4. As explained
in the text, a represents how sharp the current estimate of the motif is. The higher a is,
the sharper the motif. Examining the graph reveals that with a moderately sharp motif
(a = .7) of width 8 we can expect to discard over half the nodes in the tree at depth
w = 6.

3.2.6 Open source implementation

We have implemented the STEME algorithm in C++ as an open source library. For

the suffix tree implementation we used the SeqAn library [Döring et al., 2008]. In

addition to the C++ interface we have implemented a Python scripting interface to

make it more accessible. The codes are tested on Linux with GCC 4.4 and Python 2.6

but should work with any modern C++ compiler and version of Python 2 newer than

2.5. Our implementation is available at http://sysbio.mrc-bsu.cam.ac.uk/johns/

STEME/ Our implementation requires 500Mb of memory to work with data sets of up to

13Mb, which is well within the range of modern desktop or laptop machines. Building

the suffix tree for such a data set takes 19 seconds on my laptop. These space and time

requirements scale linearly in the size of the input.

3.2.7 Test data sets

We used data from two sources for our tests (see Table 3.1): a set of six smaller ChIP-

chip and ChIP-seq data sets we had previously worked with [Reid et al., 2010]; and five

larger data sets from the ENCODE project [Consortium, 2004].
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The six data sets we had previously worked with were prepared as follows. The data

for Sp1 were extracted from TRANSFAC professional 11.4 and the flanking bases added

by TRANSFAC were removed. The data sets for GABP, Stat1, Stat5a and Stat5b

were processed to extract the binding site sequences using the cisGenome software suite

v1.0 [Ji et al., 2008]. In every case both sequences and controls were used. Binding

region boundary refinement was used and then the region extended on each side by 30bp.

GABP peaks were selected if there were more than 18 reads in a rolling 100 bp sequence

window compared to the control. This higher figure was selected to remove visually

noisy peaks and 10,767 peaks were detected. Cutoffs of 30 and 20 reads were used for

the Stat5a and Stat5b data respectively yielding 814 and 154 peaks. RepeatMasker was

used on all the test data sets to mask repetitive elements using the genomic context for

each sequence.

The five larger data sets from the ENCODE project were produced by the Myers Lab

at the HudsonAlpha Institute for Biotechnology. We downloaded the data for SRF,

ZBTB33, RXRA, TCF12 and CTCF from the ENCODE Data Coordination Center at

UCSC.

3.2.8 Tests

In order to test the accuracy and efficiency of the STEME approximation, we ran our

STEME implementation and MEME’s EM implementation to completion on the data

sets.

We wanted to try a range of typical parameters so we ran MEME’s seed searching

algorithm with the default arguments. We used motif widths of 8, 11, 15 and 20. The

number of sites parameter took values of 2, 4, 8, 16, 32, 64, 128, 256 and 500. MEME

TF Sequences Base pairs Publication
Stat5b 144 19,379 [Liao et al., 2008]
Stat5a 737 94,250 [Liao et al., 2008]

Sp1 296 207,325 [Cawley et al., 2004]
GABP 2,275 500,203 [Valouev et al., 2008]

Stat1 2,360 500,409 [Robertson et al., 2007]
SRF 2,155 674,443 [Consortium, 2004]

ZBTB33 3,342 1,589,893 [Consortium, 2004]
RXRA 19,126 8,118,061 [Consortium, 2004]
TCF12 35,714 12,540,202 [Consortium, 2004]
CTCF 41,069 13,214,001 [Consortium, 2004]

Table 3.1: The test data sets.



CHAPTER 3. THE STEME MOTIF SEARCH ALGORITHM 97

uses the number of sites parameter to initialise λ and also to look for the best seed

(consensus sequence) for the motif. This gave us 6 data sets, 4 motif widths and 6

different number of sites parameters for a total of 144 separate test cases. Additionally

we wanted to test the effect of varying the permitted relative error so when we ran

STEME, we used εs of 0, 0.2, 0.4, 0.6, and 0.8.

Once we had run the test cases we needed some way of comparing the results of the

different implementations and the different settings for the permitted relative error, ε.

Comparison of the resulting PWMs would have been possible but we chose to perform

a simplified analysis by converting the resulting PWMs into consensus sequences and

using the Hamming distance as a distance metric. To test the accuracy of the STEME

approximation, we calculated two statistics: the mismatch rate, that is, how often the

resulting consensus sequences from the same starting point differed in any base; and

the mismatch fraction, that is, what proportion of the bases of the resulting consensus

sequences differed.

We ran the tests using version 4.5.0 of MEME which was released October 8, 2010. We

modified the MEME source code in order to obtain precise timing information for its

EM algorithm. The modifications are available as a patch included with the STEME

source code.

3.3 Results

3.3.1 How ε affects STEME’s accuracy

We compared the accuracy of STEME when using different bounds on the relative

error, ε. When ε = 0 no approximations are made and we used this as a baseline for

comparison. The average mismatch rate and mismatch fraction statistics are plotted in

Figure 3.5. Even when a very large relative error of 0.8 is permitted, only 1 in 6 of the

resulting consensus sequences differ and less than 1 in 20 bases differ. When using a

reasonable value of ε = .4, only around 1 in 8 of the test cases differed from the baseline

and only 1 in 30 of the resulting bases differed.

3.3.2 STEME’s accuracy relative to MEME

We also analysed the accuracy of STEME relative to MEME. We had hoped that the

STEME algorithm with the approximation turned off (ε = 0) would produce identical

results to MEME. For reasons we present in Section 3.4, this is not the case. These
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Figure 3.5: An analysis of how increasing the permitted relative error, ε, affects the
outcome of STEME. The STEME algorithm was run from from the initialisations
described in the text for various values of ε. Top: The mismatch rate: The fraction
of resulting consensus sequences that differed from those when ε = 0. Bottom: The
mismatch fraction: The fraction of bases in the resulting consensus sequences that
differed from those when ε = 0.

results are presented in Figure 3.6. When ε = 0, less than 1 in 4 of the test cases

had a different outcome but only around 1 in 20 of the bases in the resulting consen-

sus sequences differed. As an example, when the seed ATCCTGTTCTC is used with 16

sites on the Sp1 data set, MEME converges to CTTCCTTCTCT and STEME converges to

CTCCCTTCTCT.

3.3.3 Efficiency

We compared the running time for an iteration of STEME to an iteration of the MEME

EM algorithm. The relative speeds are dependent on the value of ε chosen and on the

width of the motif, as shown in Figure 3.7. STEME is significantly quicker than MEME

for reasonable values of ε and typical motif widths.
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Figure 3.6: An analysis of the accuracy of STEME for various values of ε relative to
MEME. The STEME algorithm was run from from the initialisations described in the
text for various values of ε. Top: The mismatch rate: the fraction of resulting consensus
sequences that differed from the results of MEME. Bottom: The mismatch fraction:
the fraction of bases in the resulting consensus sequences that differed from the results
of MEME.

3.4 Discussion

3.4.1 Accuracy

Examining Figure 3.5 we can see that when ε = .4 about one in eight of our applications

of EM had some discrepancy with the exact algorithm and about one base in thirty

differed overall. In our experience this represents a satisfactory compromise of speed and

accuracy. In any case it is not clear if all the differences introduced by the approximation

have a negative effect. Our approximation ignores those putative binding sites that are

not a good match to the motif rather than discounting them. It could be that by only

examining the higher quality binding sites, our algorithm builds a better model of the

motif. We hope to investigate this possibility in further work integrating our STEME

algorithm in a motif finder.

We also compared STEME without any approximation to MEME’s EM implementation,

see Figure 3.6. We had hoped the implementations would agree. Unfortunately there
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Figure 3.7: A comparison of the speed of STEME and MEME on one iteration of the
EM algorithm. Top: Using ε = .4 as a typical setting, the iteration speeds across all the
data sets are plotted on a log 10 scale. The error bars represent the standard deviations.
Middle: A violin plot of the relative speeds of MEME and STEME grouped by ε. With
ε = 0, STEME can be slower than MEME although we would expect this to reverse
on larger data sets. As ε grows, STEME’s advantage grows. The contours of the violin
plots are kernel density estimates that are truncated at the minimum and maximum
values. The y-axes are on a log 10 scale. Bottom: Using ε = .4 as a typical setting,
the relative speeds grouped by motif width. For motifs of width 8, STEME is between
10.3 ≈ 2 and 102.1 ≈ 125 times quicker than MEME.

were some discrepancies. We spent some time reverse-engineering the MEME source

code and discovered some inconsistencies between the published MEME algorithm [Bai-
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ley et al., 1995] and the latest implementation. In particular, the handling of reverse

complements is not discussed in the published algorithm. STEME treats each draw as

a 50-50 mixture between a binding site on the positive strand and a binding site on the

negative strand. The MEME implementation essentially doubles the size of the data

by adding a reverse-complemented copy of the data. Despite this, STEME and MEME

converge on essentially the same motifs. On average, only 1 base in 20 differs.

Interestingly it appears that there is significant overlap between the test cases for which

STEME without any approximation differs from MEME and those test cases for which

the result of the STEME changes as the permitted error is allowed to grow. This can

be seen in Figure 3.6 as the difference between ε = 0 and ε = .4 is smaller than the

analogous difference in Figure 3.5.

3.4.2 Efficiency

Figure 3.7 shows that the speed-up possible through the STEME approximation is

dependent both on the width of the motif considered and the relative error tolerated in

the estimation of the motif. For motifs of reasonable size (W = 8 or 11) an order of

magnitude increase in speed over MEME can be expected when using a relative error of

ε = .4. Our approximation is consistently quicker than MEME’s implementation of EM

which is already highly optimised. STEME achieves an order of magnitude increase in

speed on data sets of moderate size for a wide range of reasonable parameters. In the

coming years we expect the average size of data sets to continue increasing.

3.4.3 Applicability

We have not presented a complete motif finder but we have shown how any motif finder

that uses the EM algorithm on a compatible model can be adapted to handle larger

data sets. We would have liked to have presented an efficient drop-in replacement for

MEME but were prevented from doing so for some technical reasons that we elaborate

on here.

The EM algorithm is not a motif finder on its own. The result of EM is dependent on how

the parameters are seeded. Hence to find motifs, suitable seeds must be found. MEME’s

search for seeds is inefficient on large data sets. Integrating our fast EM algorithm with

MEME’s slow search for seeds would offer little benefit as run-times would be dominated

by the seed search. We are working on using suffix trees to re-implement MEME’s search

for seeds more efficiently, however this is a major undertaking in its own right. We have

included an implementation of our work-in-progress with the source code for STEME.
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It is of practical value for motifs up to width 8 on large data sets (> 500Kb) however

the efficiencies tail off quickly as the motif width increases (see Table 3.2). For example,

on the 674Kb SRF data set, MEME took over four hours to find a motif of width 8, in

contrast our implementation with STEME finished in 13 minutes, 18 times quicker.

In addition, the way that MEME calculates the significance of the motifs involves a

preprocessing step that does not scale well to large numbers of sites. Typically a user

will want to choose the number of sites proportionally to the number of sequences

in the data set. Hence for large data sets, the significance calculation needs to be

reimplemented more efficiently. We are working on this using approximations to the

LLR p-value calculations.

3.5 Conclusion

Reverse-engineering transcriptional networks remains an important in silico challenge.

Modern biology continues to generate ever larger data sets and this trend can be expected

to continue. Hence there exists a need for good motif finders that can handle large data

sets. MEME is well trusted but does not handle these data sets well. We have presented

an approximation to EM for models of the type used in the MEME algorithm. We

have demonstrated that this approximation has a minor effect on the outcome on the

algorithm and is an order of magnitude faster. We have supplied an implementation

of this algorithm and hope that it will be incorporated into existing and novel motif

finders.

Motif finding is a popular and competitive research area. Perhaps this is due to the

simplicity of the problem statement combined with the difficulty of the problem. Many

motif finders have been developed which can handle data sets of the size STEME can

cope with, for example DREME [Bailey, 2011], Trawler [Ettwiller et al., 2007], ChIP-

TF Base pairs W STEME MEME Speed-up
(Kb) (secs) (secs)

SRF 674 8 792 14,760 18
ZBTB33 1,590 8 933 78,339 84

TCF12 12,540 8 2,122 4,928,532 2,322
TCF12 12,540 10 27,424 5,176,744 189
TCF12 12,540 12 379,891 4,597,053 12

Table 3.2: Timings for STEME with search for seeds and complete MEME algorithm.
The times to run MEME on the TCF12 data set are estimated from partial runs as
otherwise they would have taken months to complete.
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Munk [Kulakovskiy et al., 2010], Amadeus [Linhart et al., 2008]. However, we hope

that the familiarity, success and popularity of the MEME algorithm ensures STEME

will find an audience amongst genomic researchers.
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Chapter 4

Transcriptional programs

The work in this chapter has been published in BMC Bioinformatics [Reid et al., 2009]

under the authorship of myself, Sascha Ott and my supervisor, Lorenz Wernisch. My

contributions to the paper were the main technical idea for the application of the model

to combinatorial aspects of transcriptional regulation, the implementation of this idea,

the analysis of the results and the majority of the text of the paper.

4.1 Background

4.1.1 Combinatorics of transcriptional regulation

As discussed in section 1.1.5 TFs often work in coordinated sets. The idea is that in

specific cellular contexts a particular TF might coordinate its activities with distinct sets

of TFs. For example, the TFs SOX2, POU5F1 and NANOG are known to form part of

a regulatory network maintaining pluripotency in human embryonic stem cells [Boyer

et al., 2005]. However eye development is regulated in part by the interaction of SOX2

with another TF, PAX6 [Kondoh et al., 2004]. This is believed to be independent of the

interaction of SOX2 with POU5F1 and NANOG in pluripotent embryonic stem cells.

Biophysically these interactions manifest themselves as many different molecular mech-

anisms, for example: cooperative binding of TFs [He et al., 2010], competitive binding

of TFs [Wasson and Hartemink, 2009], mutual transcriptional regulation [Stathopoulos

and Levine, 2005], formation of enhanceosomes [Merika and Thanos, 2001]. Current

biological experimental techniques cannot directly detect these interactions. Genomic

data commonly available today, such as expression data or TF localisation data, typi-

cally inform us about individual TFs and/or genes. These data link TFs to genes but

105
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provide little direct evidence of coordination amongst TFs. The higher order structure

of interactions between TFs must be inferred from the data.

So on the one hand, inference of biophysical interactions between specific TFs is a goal of

this work. On the other hand, cellular behaviour and regulatory networks are frequently

studied at the systems level. Due to the number of regulatory connections between TFs

and genes, these systems can be difficult to study as a whole. In these cases a summary

or view of higher order structure in transcriptional regulation is more suitable. This

work also provides such a summary.

4.1.2 Our model

Our model aims to discover cooperative effects between TFs in noisy sequence analysis

data. We use a model that has had success in the field of document modelling where

the task is to infer the latent topics that best summarise a corpus of documents. Each

document is modelled as a mixture of several topics drawn from a shared pool of unknown

topics and each topic is modelled as a collection of words. Only the documents are given

as input to the model: both the mixtures of topics that characterise the documents and

the distributions over words that characterise the topics are inferred from the data.

To explain the use of this model in the context of transcriptional regulation we draw an

analogy: in our model a document is analogous to a gene; a word is analogous to a TF

and the occurrence of a word in a document is analogous to a binding site in a gene’s

CRM. To complete the picture, a topic is analogous to what we term a transcriptional

program (TP). A TP captures the notion of a set of TFs that act in a coordinated

manner across a set of target genes. So in the same way that a document’s topics define

its context, a gene’s transcriptional programs summarise its transcriptional regulation.

Figure 4.1 shows how transcriptional programs can summarise regulatory relationships.

To provide a concrete example for the analogy, consider that the word ‘apple’ might

belong to both a topic about fruit and to an almost entirely non-overlapping topic about

computers. In the same way the TF SOX2 may be reused across distinct regulatory

programs in the cell.

Hierarchical Dirichlet processes (HDPs) are a natural framework to use in document-

topic modelling and hence for our work in transcriptional regulation. In our framework,

transcriptional programs are modelled as distributions over TFs. Each gene’s transcrip-

tional regulation is modelled as a mixture of these programs. Dirichlet process mixtures

(DPMs) are a non-parametric technique for modelling mixtures where the number of

components is unknown. We use DPMs to model the mixture associated with each

gene’s transcriptional regulation. In order to share transcriptional programs between
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G0 G1 G2 G3 G4 G5 G6

Figure 4.1: Two schematics of the same regulatory network. Both representations have
four TFs at the top and seven genes at the bottom. The lower network uses latent
transcriptional programs as intermediaries to reduce its complexity. Note that the tran-
scriptional programs can overlap, for example TF1 is in both programs and that the
same gene can be targeted by multiple programs, for example G3 and G4.

genes we use a common base distribution for the DPMs which is itself a DPM. This

step makes our model hierarchical. An extensive review of HDPs is given in [Teh et al.,

2006].

4.1.3 Previous work

Quite a few approaches have been suggested in the literature to identify groups of TFs

that co-regulate genes, often called transcriptional modules (TM). They all differ from

our approach in several respects. One major difference is that our concept of transcrip-

tional programs is slightly more abstract than TMs. A TM is often defined as a set of
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TFs that physically bind next to each other in the vicinity of the regulated gene. Many

approaches either enumerate all possible combinations of TFs up to a certain number

(fewer than half a dozen or so) as potential TMs and search for over-representation

of TMs in various groups of genes [Sharan et al., 2003, Kreiman, 2004, Ho Sui et al.,

2007, Singh et al., 2007]. There is usually a computationally intensive post-processing

step involved in clustering TMs according to ad hoc rules in these combinatorial ap-

proaches to reduce the number of highly similar TMs. Alternatively, an incidence matrix

(or bipartite graph) is calculated linking each TF to the genes it regulates [Lemmens

et al., 2006,Chen et al., 2007,Jensen et al., 2007] (as in Figure 4.1 top).

In contrast, a transcriptional program, as we define it, comprises TFs as well as genes (see

Figure 4.1 bottom) and does not necessarily require a physical vicinity of binding sites

for all the TFs in the program. For example, if two transcriptional modules have some

common TFs, not necessarily sharing all of them, they might be merged into one tran-

scriptional program by our algorithm. Whether this happens depends on the amount

of overlap and the number of co-occurrences of their TFs. In a way, transcriptional

programs generalise both transcriptional modules and TF-gene incidence matrices and

provide a higher-level summary of these structures. To our knowledge, the only other

work defining transcriptional programs in a similar way is by Tanay et al. [Tanay et al.,

2004b]. In contrast to their work, where such programs are found by enumeration, scor-

ing and filtering, we model transcriptional programs explicitly within a comprehensive

probabilistic model.

Some work, as discussed below, insists on clusters of co-regulated genes or groups of

co-regulating TFs to be disjoint. Our approach is open to the possibility that genes as

well as TFs can be members of several transcriptional programs simultaneously. Indeed

this fits our biological understanding well: TFs are well known to be reused in different

combinations in different cellular contexts. A further difference is that many approaches

require a positive gene set, for example, by co-expression, as well as a background set to

detect TMs that characterise one set against the other. Our approach is essentially an

unsupervised one, where transcriptional programs are discovered from one sequence set.

This is a more challenging problem but it requires less input from the user and avoids

problems of mis-identification of the positive set.

To our knowledge, our approach is the first application of a document topic model to

transcriptional regulation. Such models have the distinct advantage of using very few

free parameters that need to be specified.

Being more specific about previous work, CREME [Sharan et al., 2003] uses a sliding

window to look for combinations of TFBSs that are over-represented in promoters of

the genes of interest. Only combinations whose sites are physically close to one another
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can be detected in this way. The user must specify the maximum number of factors in

a promoter. oPOSSUM2 [Ho Sui et al., 2007] looks for pairs and triplets of TFs that

are over-represented in the promoters of the genes. TREMOR [Singh et al., 2007] is

similar but uses the Mahalanobis distance to distinguish between similar PWMs that

represent different members of the same family of TFs. It also removes some dependence

on arbitrary p-value thresholds. All of these methods discriminate between a positive

user-specified set of genes and a negative (background) set. Our method differs in that

it fits a model of the entire set of genes at once.

Kreiman [Kreiman, 2004] looks for over-representation of combinations of up to four TFs

in co-expressed genes. Blüthgen et al. [Blüthgen et al., 2005] use Cluster-Buster [Frith

et al., 2003] to identify groups of potentially co-regulating TFs which are then further

filtered by statistical enrichment of classes of regulated genes in the Gene Ontology (GO)

catalogue [Ashburner et al., 2000].

There is some work that integrates more than one data source. Some combination of

ChIP-chip, binding site analysis (either de novo or PWM-based) and expression data

are commonly used. Heuristics or probabilistic models are used to search for consistent

structure amongst these data sources. Almost all this work has been carried out in

Saccharomyces cerevisiae. ReMoDiscovery [Lemmens et al., 2006] builds on the Apriori

framework in a two-step procedure which examines expression profiles and ChIP-chip

data. MOFA [Wu et al., 2006] combines binding data with time-series microarray data

to build transcriptional modules and explicitly models which TFs up or down-regulate

which genes. SAMBA [Tanay et al., 2004b] is a biclustering framework that analy-

ses gene expression, protein interaction, growth phenotype, and TF binding data. In

COGRIM, Chen et al. [Chen et al., 2007] use Gibbs sampling in a Bayesian hierarchical

model to integrate expression data, PWM analyses and ChIP-chip data. They model

uncertainty in each data source independently but each module is associated with ex-

actly one TF. As discussed above most of this work is reconstructs pair relationships of

TFs and regulated genes.

Segal et al. [Segal et al., 2003b] have integrated a motif search algorithm and gene

expression data to find motif profiles (analogous to transcriptional programs) in Saccha-

romyces cerevisiae. Their model partitions the genes into a fixed number of mutually

exclusive sets which have the same expression pattern across experiments. Each gene

is the target of exactly one motif profile, hence their model does not allow so much

structure in the latent profiles/programs. Also, the number of partitions must be fixed

somewhat arbitrarily in advance by the user. They focus on Saccharomyces cerevisiae

which has a simpler transcriptional code than Mus musculus, the focus of our study.

Various other probabilistic models that require specification of the number of modules
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by the user have been implemented. Xu et al. [Xu et al., 2004] build on the module

networks of Segal et al. [Segal et al., 2003a]. These models also partition the gene set

to find transcriptional modules. Our model allows genes to be the target of more than

one transcriptional program.

Other algorithms also use non-parametric probabilistic models to obviate the need to

specify the number of modules. Gerber et al. [Gerber et al., 2007] use hierarchical

Dirichlet processes to discover expression programs in human microarrays. They use

a similar model to ours, except their data are discretised expression levels rather than

putative TFBSs. They use a Markov chain Monte Carlo (MCMC) method for inference

which takes an order of magnitude longer than our variational approach. The MCMC

method produces a posterior distribution over the unknowns in their model. One of

the latent variables in their model is the structure of the gene hierarchy. Identifiability

issues force them to use a complex set of heuristics to summarise this hierarchy. Liu et

al. [Liu et al., 2007] use a Bayesian hierarchical model to examine yeast gene expression

and ChIP-chip data. Their extension of an infinite mixture model limits each program

to represent binding data for at most one TF. It is difficult to see how cooperative

effects are estimated by the model.

4.2 Methods

4.2.1 Binding site analyses

We extracted 1,000 repeat-masked base pairs upstream of the mouse transcriptional start

sites (assembly July 2007) as defined in the UCSC Genome browser [Kent et al., 2002].

After removing strongly repeat-masked sequences we were left with 18,445 sequences for

analysis.

We extracted a set of PWMs from TRANSFAC version 11.4 for which we could map

the factors they represent onto Ensembl gene identifiers [Hubbard et al., 2007]. From

each promoter we need an estimate of the number of times there is a binding site for

that PWM in the CRM as input to our HDPM.

We scored each putative TFBS in the promoters with the log-likelihood scoring scheme

(Section 2.1.2). We used a threshold of SLL > 7.8 to predict TFBSs. Our experi-

ence working with biologists has shown us that this is a reasonable threshold to use.

Our model does allow for noisy data and should accommodate false positives in the

large vague transcriptional programs that do not model cooperative effects. We were

constrained by our computational resources from lowering this threshold significantly.
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Up to this point we have been dealing with each PWM independently. Unfortunately

they are not independent as, for instance, there are many factors for which TRANSFAC

has more than one PWM. Two PWMs for the same factor are very likely to represent

TFBSs at the same location in a promoter. We do not wish our model to learn this

strong correlation instead of true transcriptional programs. We therefore reduce our set

of TFBSs by taking the highest scoring set of non-overlapping TFBSs for each promoter.

To do this we used the BiFA maximal chain algorithm applied to just one sequence.

4.2.2 Topic document model

In the field of information retrieval HDPs [Teh et al., 2006] are often used to model

latent topics in documents. We apply them to TFBSs in promoters to infer latent

transcriptional programs.

Our model is best described generatively, that is, we describe how to sample a suitable

TF from our model given a target gene. We follow the description in [Teh et al., 2008].

A gene g is linked to a distribution over transcriptional programs, which is represented

by a (possibly infinite) vector θg = (θg1, θg2, . . . , θgk, . . .), where θgk is the contribution

of program k to gene g. All θgk sum up to one for each g. A program k in turn is

linked to a similar distribution over TFs, that is, program k is represented by a vector

φk = (φk1, . . . , φkJ), where φkj is the contribution of TF j to program k assuming there

are J TFs in total. All φkj sum up to one for each k.

To sample a random TF for binding site i upstream of gene g, we first sample a multi-

nomial random variable variable zig ∼ Mult(θg) which indicates the transcriptional pro-

gram the factor is drawn from. Next, we sample a second multinomial random variable

xig ∼ Mult(φzig) taking the selected transcriptional program zig into account. Sample

xig specifies which TF binds at binding site i upstream of gene g.

When calibrating the model using data, the task is to infer posterior distributions for

parameters θg and φk. In order to do this, we place conjugate Dirichlet priors on

the parameter vectors and use a variational approach to approximate their posterior

distribution (for details see [Teh et al., 2008]). More specifically, we set θg ∼ Dir(απ)

and φk ∼ Dir(βτ). α and β are scalar strength parameters that control the variances of

the θg and φk respectively. π and τ are vectors and represent their respective means.

We do not wish to constrain our model to use a fixed number of transcriptional programs.

Instead, we use a non-parametric approach where we allow a countably infinite number

of transcriptional programs. Now θg and π are infinite dimensional vectors. π is modelled

using an explicit stick-breaking construction [Sethuraman, 1994] where γ controls how
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many transcriptional programs are used. Formally, the stick-breaking model is defined

by

πk = π̃k

k−1∏
l=1

(1− π̃l) π̃k ∼ Beta(1, γ) for k = 1, 2, . . .

Intuitively, probabilities πk are obtained by starting with a stick of length 1, and con-

tinuing to break pieces off it, their lengths representing the probabilities πk. Even if

continued indefinitely the pieces all sum up to one, the total length of the stick, forming

a proper probability distribution over the natural numbers. The size of piece k is deter-

mined as a fraction π̃k of the remaining stick, whose length is
∏k−1

l=1 (1− π̃l), where π̃k is

a random number from the interval [0, 1] distributed according to a Beta distribution.

We also place priors on all the other hyperparameters of the model,

α ∼ Gamma(aα, bα) β ∼ Gamma(aβ, bβ) γ ∼ Gamma(aγ, bγ) τ ∼ Dir(aτ )

Our model is presented graphically in Figure 4.2.

4.2.3 Inference

We implemented the collapsed variational inference technique described by Teh et al. [Teh

et al., 2008] complete with the Gaussian approximation for non-zero counts.

4.2.4 Thresholding the posterior

In our model each transcriptional program is represented as a distribution over factors,

φk, and each gene can be summarised as a distribution over programs, θg. In order to ex-

amine the programs we have learnt, we thresholded these distributions to discover which

programs are over-represented in which genes and which factors are over-represented in

which programs. However, due to the collapsed nature of the inference algorithm we

do not directly obtain a posterior over them as they have been integrated out. The

inference algorithm does infer which factors have binding sites in which genes due to

which transcriptional programs. These inferences are summarised as the expectations

of various counts and these allow us to estimate the θg and φk and hence associate

transcriptional programs with genes and with TFs.

More formally, in an analogous notation to [Teh et al., 2008], we define ngkf as the num-

ber of binding sites for factor f drawn from transcriptional program k in the promoter

of gene g. A ‘.’ in the subscript indicates summation over that index. For example, n.kf
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k=1,...,∞
g=1,...,G

i=1,...,ng

γ

aγ

bγ

π̃

π

α

aα

bα

θg zig xig φk

β

aβ

bβ

τ

aτ

Figure 4.2: We present our model graphically. The shaded nodes represent observed
variables (or equivalently from the model’s perspective, fixed hyper-parameters). The
clear nodes are the latent variables in the model. The boxes are called plates. If a node
is inside a plate, its corresponding variable has a multiplicity equal to the size of the
plate. For example, there are G instances of the θg variable as its node is inside the
g = 1, . . . , G plate. See the text for a description of the variables.

is the number of binding sites of factor f drawn across all genes from program k. Now

we make point estimates:

θ̂gk =
E(ngk.)

ng..
φ̂kf =

E(n.kf )

E(n.k.)

We define Φf =
n..f
n...

to be the empirical distribution of factors. Now we associate with

transcriptional program k all those factors, f , for which
φ̂kf
Φf

> 2. Likewise we define

Θ̂k = E(n.k.)
n...

and associate those genes, g, with transcriptional programs, k, for which
θ̂gk

Θ̂k
> 2. We found our method was insensitive to the actual choice of threshold: when

we varied it between 11
2

and 10 the results were not affected significantly. Of course it is

possible for a program to have no factors nor genes associated with it if its distributions

are close to the empirical distributions.
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4.2.5 Validation

Correcting for multiple testing in a GO ontology is difficult due to its hierarchical nature.

To validate the strength of our results we generated random samples from the same

populations of genes and TFs to test for enrichment. We choose sample sizes to cover

the range of sizes in the discovered transcriptional programs. For each size we sampled

100 independent sets and calculated the exponent of the best p-value found in a GO

term enrichment analysis (see Section 4.3.3).

Significance of p-values

We used a bootstrap approach to assess the significance of the results from the GO

enrichment analysis. We generated random samples of factors and random samples of

genes without replacement. We analysed each sample for GO enrichment using the

same procedure as for the transcriptional programs that our model predicts. For each

sample we took the best uncorrected p-value and refer to its base 10 logarithm as its

p-score. In Figure 4.3 we show box plots of the p-scores for the randomly sampled

factors and target genes. We sampled 100 times at each of 50 different sample sizes for

the factors and the targets. The sizes were chosen to reflect the range of sizes of the

actual transcriptional programs. Hence each plot represents 50∗100 = 5000 independent

samples. The sample size does not appear to affect the extreme value distribution of

the best p-scores’ exponents. From 10,000 independent samples, the lowest p-score is

around -6.

Each p-score represents the smallest p-value obtained when a random sample of factors

or targets was tested against every term in the GO hierarchy. We wanted to correct

the p-values for these multiple tests. Plotting the sorted p-scores against the base 10

logarithm of the proportion that are equal or better gave us a good linear fit (Figure 4.3).

This fit has an intercept very close to -2 which, together with the linear relationship,

suggest adding 2 to the p-score to obtain a multiple testing corrected p-value exponent.

That is, we would expect to have to generate 102 random samples in order to achieve a

p-score of -4. Hence we would deem a p-score of −4 significant at the 0.01 level.

4.3 Results and Discussion

We analysed the promoter regions of 18,445 Mus musculus genes using PWMs from

TRANSFAC. This generated 78,085 putative TFBSs of 149 TFs which scored above a

stringent threshold (see Section 4.2.1). We ran our model on these putative TFBSs and

it discovered 68 latent transcriptional programs.
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Figure 4.3: Assessment of the significance of the results from the GO enrichment analysis
by random samples of factors and genes. We show a boxplot of the p-scores for the
randomly sampled factors on the top left and the targets on the top right. The x-axes
are the sample sizes and the y-axes are the p-scores. We sampled 100 times at each of
50 different sample sizes for the factors and the targets. The lower plot shows the sorted
p-scores plotted against the base 10 logarithm of the proportion that are equal or less.

4.3.1 Inference

As variational inference only converges to a local maximum, we ran the algorithm 24

times from different initialisations. Each initialisation differed only in the variational

distribution over the assignment of TFBSs to programs, q(z). These were drawn ran-

domly from a Dirichlet distribution. Figure 4.4 shows how the converged expected

log-likelihoods varied between the 24 restarts.
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Figure 4.4: Each point represents one run of the variational inference algorithm. The
expected log-likelihood at the initial conditions is given on the x-axis and the expected
log-likelihood after convergence is given on the y-axis.

4.3.2 Structure of the programs

The number of TFBSs explained by each of the 68 programs varied considerably. Most

of the TFBSs were explained by the largest 10 programs (Figure 4.5). We examined how

many target genes and transcription factors were associated with each program and how

this related to the number of TFBSs explained by each program. In general we found

a good separation of these statistics across the programs (Figure 4.6) showing that our

model had inferred structure across large sets of genes as well as structure across small
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Figure 4.5: We show how many TFBSs are generated by each transcriptional program
in our model. The number of binding sites that each program in our model explains is
shown on a log-scale. A by-product of our algorithm is that the programs are sorted
by the number of TFBSs they are responsible for. The most frequently used transcrip-
tional programs accounted for almost 30,000 and 15,000 binding sites respectively and
the smallest just for a handful. The largest programs are composed predominantly of
common TFs and in general the smaller programs explain occurrences of rarer TFs.

gene sets.

Coverage of the genome

As the model associates each TFBS with a program, even those TFBSs for which co-

operative effects cannot be found must be associated with a program. The model uses

the largest two programs (programs 0 and 1) for these TFBSs: their distribution over

factors is vague and they target many genes. To some extent, the programs that explain

more binding sites are less likely to represent true cooperative effects. They can be seen

as a ‘catch-all’ for those TFBS that the model could not find higher-order structure

for. We looked at the number of target genes of the programs in this context. That

is, we analysed the total number of target genes of all programs smaller than a given

size (Figure 4.7). The size of a program is measured by the number of binding sites

it explains. Including the first two vague programs, a total of over 10,000 genes are

associated with our programs. Most of the binding sites are explained by the first ten

programs and using this as a cut-off we can see that the remainder of the programs still

target over 4,000 genes. Thus a sizeable proportion of the genome can be associated

with the cooperative combinations of factors defined by our programs.
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Figure 4.6: A scatter plot of the programs showing the number of TFs against target
genes. The area of each scatter point is proportional to the number of binding sites
the program is responsible for. Note the first two programs do not have any genes
or targets associated with them, their distributions over TFs are very similar to the
genomic distribution and they are ubiquitous.

0 10 20 30 40 50 60 70

program cut-off

0

2000

4000

6000

8000

10000

12000

#
ta

rg
e

ts

Figure 4.7: We plot how many genes are targeted by the programs smaller than a
given size. The programs that account for more binding sites are less interesting in
terms of cooperative effects, so we plot the size of the set of all targets of all programs
smaller than a given size. The size cut-off varies along the x-axis (indexed by program)
and the y-axis represents the total number of genes targeted by those programs. For
example, excluding the first 10 programs, just over 4,000 distinct genes are targeted by
the remainder of the programs.
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Figure 4.8: Each transcriptional program is associated with a set of TFs and a set of
target genes. We examined the relationships between the programs and their targets
and factors. The top left figure shows that most programs have fewer than seven factors
associated with them. The top right illustrates that most factors are in fewer than five
programs. The bottom left shows that a few programs target many genes but most
programs have fewer than 200 targets and the bottom right demonstrates most genes
are targeted by two or fewer programs.

Separation between the programs

In general, we found a good separation between the programs, in that any given TF or

gene is unlikely to be associated with many programs and conversely that most programs

were associated with a small number of TFs and genes (Figure 4.8). This was confirmed

by our analysis of the intersection between pairs of programs’ TFs and the overlap

between their target genes (Figure 4.9).

4.3.3 Validation

In order to test whether the transcriptional programs capture real biological struc-

ture we validated the transcriptional programs using an analysis of enrichment for GO

terms [Ashburner et al., 2000], signalling pathways from the KEGG database [Kanehisa,

2006], tissue specific co-expressed genes from SymAtlas [Su et al., 2002], and groups of

known interacting TFs from the literature. We present those transcriptional programs

that were noteworthy in the validation in Table 4.1.
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Figure 4.9: The intersection of all the programs’ factors and targets. On top, we show
how much the factors of the programs overlap. This is represented as the ratio of the
size of the intersection between the factors to the size of one of the sets of factors. The
bottom is the same analysis of the programs’ targets. The overlap between targets and
factors is negligible in almost all cases. The sets of factors that do overlap to some
extent are those that are not responsible for many TFBSs. The first two programs do
not have any factors or targets associated with them.
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TP # Targets Factors
2 669 Nkx2-1 Dbp Ahr Srebf1 Egr2 Tcfap2a Sp1

Egr1
3 1474 Rest Pparg Pax6 Creb1 Vdr Ets1 Hivep1

Pbx1 Dmrt2 Hand1 Dmrta1 Irf8 Atf2 Ar
4 1419 Gabpa Gzf1 Ppara Stat3 Hoxa5 Ikzf1 Hnf4a

Srf Pax5
5 1510 Atf4 Dmrt1 Lhx3 Nkx6-1 Stat5a Runx2 Irf2

Pax4 Pax1
12 198 Nfya E2f1 Mtf1
13 372 Foxo3 Foxj2 Dmrt3 Nr2f1
15 230 Pbx1 Nr5a1 Sry Rora
18 268 Pou1f1 Pax2 Ets2 Cux1 Tbp
25 275 Srf T CT025657.12-201 Pou5f1
28 167 Cebpa Gabpa Cebpg Dbp Tgif1 Atf3 Rela

Hes1 CT025657.12-201
53 111 Gzf1 Atf2
55 54 Klf4 Prdm1 Atf3

Table 4.1: Some of the more interesting transcriptional programs.

GO term enrichment

Each program is associated with a set of TFs and a set of target genes. We tested the

genes and the factors in each program for enrichment of terms in the biological process

GO ontology. We used a standard hypergeometric test in conjunction with the weight

method implemented in the topGO R-package [Alexa et al., 2006] as a significance test.

Table 4.2 shows the result of the GO enrichment analysis.

KEGG pathway enrichment

We tested the genes and the factors in each program for enrichment in signalling path-

ways defined in the KEGG database. After Bonferroni correction for multiple testing,

we found no significant results. However, we did find a significant result in conjunction

with our analysis of known interacting TFs from the literature.

SymAtlas enrichment

We tested the target genes in each program for enrichment in tissue-specific co-expressed

genes from the SymAtlas dataset. Genes over-expressed in embryonic tissues were sig-

nificantly enriched in the targets of transcriptional program 53. Program 53 accounts
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for fewer than 100 binding sites out of the 78,085 sites, yet was strongly predictive of

membership of the group of over-expressed genes. This demonstrates the ability of our

method to find small signals in large datasets.

Literature

We took well known sets of interacting TFs from the literature and looked for programs

that contained them. We looked for sets of TFs associated with the liver, muscle devel-

opment, and the cell cycle. The three factors in transcriptional program 12 (E2F, NFY,

MTF1) contain two of the three TFs in our analysis that are known to regulate the cell

cycle (E2F, CREB, NFY [Elkon, 2003]). When we tested the targets of program 12 for

enrichment in the KEGG cell cycle pathway (without correcting for multiple testing) we

obtained a p-value of 9e-4. The extra TF in program 12 that is not in our literature

derived set, MTF1, has been implicated in the cell cycle [Lichtlen et al., 2001] and as a

co-regulator with E2F [Joshi et al., 2005].

4.3.4 Structure at many scales

Our model found programs over a wide range of sizes. However a DPM would be

expected to have components of varying sizes. This expectation is made explicit in the

DPM’s representation using the stick breaking construction. As demonstrated in the

GO enrichment validation (Table 4.2) our model was able to find significant signals in

both large and small programs. This does not prove that the DPM’s prior over program

sizes fits the data well but it does demonstrate that the found programs are not just an

artefact of the DPM’s prior.

4.3.5 Biological interpretation

Several of the discovered programs have well defined biological meanings. Not many

of the factors of the transcriptional programs were significantly enriched for GO terms.

However, program 28 did contain five of seven TFs that are annotated with the term

‘liver development’ in its nine factors.

Several of the target sets of the programs were strongly associated with different GO

terms. In particular, program 12 was particularly enriched for genes with nuclear prod-

ucts and those that are involved in nucleosome assembly. Program 18 appears to be

associated with the sense of smell as it has strong enrichment for ‘olfactory receptor

activity’ and ‘sensory perception of smell’.
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4.3.6 Potential improvements

There are a number of ways the model and analysis as presented could be improved.

PWM scanning has a high FDR

Predicting TFBSs by scanning for PWMs is a notoriously difficult task. PWMs are

typically reasonably degenerate motifs and will match many putative TFBSs. At any

reasonable threshold the number of false positives is high. In our method we have used

a simple scan of the promoter sequence to predict TFBSs. The high false discovery rate

could be managed in part by integrating other sources of data that are indicative of TF

binding such as in vivo location data for particular TFs from ChIP-seq experiments,

epigenetic data regarding histone modifications or DNA methylation, and phylogenetic

conservation across related species. Methods to reduce the FDR have been discussed in

Chapter 2.

Weak binding sites

Our method must discard those TFBSs that are not amongst the strongest in the regula-

tory region. It must do this to avoid introducing a bias when there is an overlap between

PWMs (see Section 4.2.1). Several recent studies have shown that in many instances,

weak TFBSs are crucial for regulatory networks to generate proper expression patterns.

In our analysis we are selecting against these sites. It is difficult to assess how much

this affects our analysis. It is also difficult to modify the analysis to include these weak

binding sites particularly because we already have the problem of the high false positive

rate when scanning for PWMs.

Poor knowledge of PWMs

It is believed that the mouse genome contains a much greater number of sequence-

specific transcription factors than we have PWMs for. Our analysis uses 149 PWMs

but the mouse genome is estimated to contain of the order of 2,500 TFs. The 149

PWMs are biased towards the most highly studied and perhaps most important TFs

but nevertheless our model is only looking at a small fraction of the TFs. Recently

much progress has been made elucidating the binding preferences of more TFs. In

particular many TFs’ binding preferences have been characterised using protein-binding

microarrays. Additionally many TFs’ binding preferences have been learnt from motif

search in large ChIP data sets. Despite this progress it is believed the majority remain

to be discovered.
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As well as a lack of knowledge of some PWMs, there is the problem that many TFs

are related and have similar binding preferences. It is easy to mis-classify TFBSs for

separate members of these families of TFs. Some PWMs represent a lowest common

denominator of binding for such families, for example a core binding region that is the

same across all members of the family. However the activity of different members of the

family may be quite distinct: they may interact with different partner TFs and have

distinct biological roles. In this case an analysis using the familial binding preferences

is not ideal. Whilst in some cases TFBSs for members of the same family can be

differentiated on the basis of their PWMs, in general this is a difficult issue and one

that would require a more sophisticated treatment. Perhaps familial PWMs could be

removed from the set of PWMs when the binding preferences of a sufficient number of

family members was known. In other cases it might be beneficial to use the familial

binding PWMs in the analysis in place of more specific PWMs for family members.

Paralogous sequences

Gene duplication events can also duplicate regulatory regions. After such an event, the

two regions would be likely to diverge under evolutionary pressures. However recent

duplication events will not have diverged far and could bias the results of the analysis.

If two such paralogous regulatory regions were included in the model, they would likely

contain very similar sets of TFBSs. This is precisely the situation our model is built to

detect. However in this case, spurious non-functional TFBSs would stand a good chance

of being detected as part of a transcriptional program. Furthermore, paralogous genes

are commonly related and these transcriptional programs might well score highly in any

gene set significance tests such as those performed above. We have not controlled for

this effect but a more rigorous analysis would investigate this issue. We are not aware

of any useful information about paralogy between specific genomic regions. Information

on pairs of paralogous genes is available that could be used as a proxy for whether

particular regulatory regions are paralogous. Any sets of paralogous regions could be

replaced with just one typical member to avoid this issue.

Distal regulatory regions

In this study we have examined the promoter regions of known mouse genes. Due to

recent advances in experimental techniques it has become clear that much regulation of

gene expression occurs at some distances from promoters (at least when the distance is

measured along the chromosome). Our method and model do not attempt to use any

regions distal from target genes. This is mainly due to the size of the mouse genome
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and the absence of reliable information about which regions might be regulatory when

this study was carried out. More recently more data concerning those epigenetic modifi-

cations that accompany regulatory activity have become available in mouse and human

(for example, the ENCODE project). In some models of transcriptional regulation dis-

tal regulatory regions encode expression patterns and promoters are more concerned

with assembling the transcriptional machinery rather than encoding regulatory logic.

In these cases the interesting programs would be active at the distal regions rather than

the promoters. Thus modelling the make-up of distal regulatory regions could increase

the power of the method significantly. However this modelling comes with its own prob-

lems. It is straightforward and reasonable to assume that a promoter regulates the gene

it sits next to on the chromosome. Distal regions may or may not regulate the gene

that is closest to them. There are well known examples where a region may regulate a

more distant gene or even a gene on another chromosome. This uncertainty could be

modelled explicitly or simplifying assumptions about which gene might be regulated by

a region could be made. In either case we would expect that the integration of distal

regions into the model would be beneficial.

Cell type specific activity

We have ignored the issue of cell type. It is well established that different regulatory

programs are active in different cell types. The activity of regulatory regions is asso-

ciated with certain epigenetic modifications. These modifications vary across different

cell types. One popular model suggests that a gene’s activity is regulated by different

regulatory regions in different cell types. In this model the gene’s expression patterns

in different cell types would be different under the same inputs (TF concentrations)

because the accessibility and activity of each regulatory region is altered in a cell-type

specific manner by epigenetic modifications. This aspect of transcriptional regulation

has typically been ignored by models that predict expression or look for transcriptional

programs or modules. One would expect that particular transcriptional programs would

be associated with regulatory regions that are active in the same cell types. The re-

cent explosion in availability of epigenetic data means that models incorporating this

information should be useful.

TF expression

In addition to cell-type specific epigenetic modifications, different genes are expressed

in different cell types. In particular the genes encoding TFs in any given transcriptional

program would be expected to be expressed in similar cell types. The wealth of expres-
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sion data across multiple cell types could provide yet more information from which to

infer transcriptional programs.

Restrictive DPM priors

We have not thoroughly examined the suitability of the model for the data. HDPMs

are flexible models in that they do not constrain the data to fit in a particular number

of programs. On the other hand, the prior that they place on the number of programs

does not necessarily match our expectations about our data. A DPM prior suggests that

the number of components should grow as the logarithm of the number of data points.

Our model is not a simple DPM but a HDPM, however the sizes of the programs found

by our model seem to decay exponentially in line with this behaviour. We have not

investigated if our model prior enforces this behaviour or if it is inherent in the data.

Pitman-Yor processes are more flexible generalisations of Dirichlet processes that can

escape this logarithmic behaviour. Replacing our HDPM with a hierarchical Pitman-

Yor process mixture model would be possible but inferences are more difficult in these

models and it is not clear if there are significant gains to be made using them.

4.4 Conclusions

Discovering structure in sequence analyses is a difficult task. We are limited by the set

of PWMs available, our inability to predict regulatory genomic regions and the high

false positive rate of PWM scanning. Out of the three sets of interacting TFs that are

most cited in the literature, we only recovered one of them. However, our method is

looking for structure in a much larger dataset than other methods and does not have a

positive set and a negative set of genes with which to discriminate.

Our model does find significant structure in these analyses and it is reasonable to suppose

that this structure underlies some mechanisms of transcriptional regulation. This is to

be expected given our understanding of the underlying biology. A valuable property of

our method is that it finds structure at both large and small scales.

We have shown that non-parametric probabilistic models are useful tools for unsuper-

vised learning in this context. Techniques for genomic data integration are just starting

to be applied with success to higher eukaryotes and we believe HDPM models are useful

non-parametric tools for this task. We believe that probabilistic models are natural and

principled tools for integrating diverse types of data. We expect their popularity to

increase as more experimental techniques and data become available.
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Chapter 5

Discussion

5.1 Contributions

In this thesis I have applied probabilistic methods to three different problems each of

which involves a different aspect of transcriptional regulation.

In Chapter 2 I presented an algorithm to predict binding sites. The algorithm is not

a rigorous application of a probabilistic model and an inference technique. However, it

does use Bayes factors as principled measures of evidence despite the ad hoc technique

used to combine them. Without a more complex approach that explicitly models the

dependencies between the sequences, a Bayes factor approach is perhaps the closest it is

possible to get to a justifiable probabilistic model. I have evaluated this BiFA algorithm

against three other methods in an attempt to assess its strengths and weaknesses. In do-

ing so I discovered some of the strengths and weaknesses of the competing algorithms. I

was also able to assess some of the statistics and methods used to evaluate these methods

in other work. Whilst the BiFA algorithm did not out-perform the other algorithms, it

is an alignment-free algorithm and my evaluation together with previous work, suggests

that alignment-free algorithms have a place in phylogenetic TFBS prediction.

In Chapter 3 I presented STEME, an efficient approximation to MEME which is an

established algorithm for motif finding. STEME allows the application of the algorithm

to data sets of the size generated by modern biological techniques. The EM algorithm is

one of the most popular inference algorithms and STEME demonstrates how significant

efficiencies can be achieved at a small cost in accuracy, albeit only when applied to a very

specific probabilistic model. It would be interesting to investigate if suffix trees could

be used to improve the efficiency of inference in more complex models. For example,

efficient inference in hidden Markov models on genome-scale data would be a useful tool

for computational biologists. It could be that the location dependent hidden state of

129
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such models prevents a data structure that ignores location such as a suffix tree from

achieving such efficiencies.

In Chapter 4 I presented a more complex non-parametric probabilistic model inspired

by document-topic models from the machine learning literature. I applied the BiFA

algorithm from Chapter 2 to Mus musculus promoters to provide the data for this model.

I applied the collapsed variational inference technique to show that the abstract concept

of transcriptional programs can capture biological relationships between sets of TFs and

genes. I demonstrated that the model captures relationships on many scales. That is,

the model learns relationships that affect many genes and TFs and also relationships

that are specific to limited sets of genes and TFs.

5.2 Probabilistic models

For a system to be worthy of study, be it transcriptional regulation or something entirely

different, some uncertainty about it must exist. The act of learning is the reduction

of this uncertainty. Probabilistic models are suitable tools for research because they

explicitly quantify uncertainty. Complementary to this quantification of uncertainty is

the ability to apply the laws of probability to make inferences. Jaynes describes these

laws as “The Logic of Science” [Jaynes, 2003]. I hope that the methods in this thesis

have shown that in combination, the quantification of uncertainty and the application

of the laws of probability are powerful tools.

As an example consider the task of looking for transcriptional programs. Given a data

set of TFBSs there are many ways one could go about searching for transcriptional

programs. A natural approach that suggests itself is a combinatorial one that looks for

over-represented pairs, triplets or higher order combinations of TFs and/or genes. Once

these pairs or triplets are identified a subsequent step in the approach could be to amal-

gamate them into transcriptional programs that link TFs to genes. Typically in this

sort of approach we would be compelled to define one or more significance thresholds.

Combinations that passed this threshold would be considered equivalently and those

combinations that just failed to pass would be ignored. As uncertainty is represented

explicitly in probabilistic models they have a softer character when inferring such combi-

nations. That is, the evidence in favour of a particular transcriptional program might be

weak from the standpoint of the TFs or the genes but in combination it could be enough

to justify our belief that the transcriptional program represents a biological program.

Admittedly in my method I use a thresholding approach to generate a concrete set of

transcriptional programs from the variational approximation to the posterior. However,
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this is a post-processing step. I believe that methods that propagate uncertainty further

through the inference process are more powerful in general.

5.3 Future work

The three preceding chapters include discussions of ideas that might stimulate further

work on the models presented therein. In this section, I try to identify common ideas

and research directions for the methods and their applications. I also try to highlight

what relevant data has or is about to become available.

5.3.1 Integration

The three methods presented in this thesis have all been developed fairly independently

but there is a natural order in which all three could be combined. The utility of models

of combinatorial interactions would be increased by predictions for more TFs. Increasing

the numbers of TFs for which we can computationally predict TFBSs relies upon learning

sequence binding preferences for those TFs. Hence, given suitable data, STEME could

add to the databases of PWMs; the BiFA algorithm could make predictions based

on these PWMs; and the transcriptional programs model could be used to discover

combinatorial structure in those predictions.

Relevant data

What types of data might be interesting to study in the context of integrating the three

methods? Enhancers are believed to implement most of the logic of transcriptional

regulatory networks. Any data that could narrow our search for TFBSs and interactions

between those TFBSs to enhancers would be ideal. Recently, there has been much

interest in the field of epigenetics. Several epigenetic marks are strongly associated with

enhancer activity, typically in a tissue-specific manner: the acetylation of histone H3

at lysine 27 (H3K27ac) [Creyghton et al., 2010]; the monomethylation of histone H3 at

lysine 4 (H3K4me1) [Heintzman et al., 2007]; DNase I hypersensitive sites [Dorschner

et al., 2004]; and DNA methlyation [Xie et al., 2013, Schlesinger et al., 2013]. Also,

the p300 protein is associated with enhancer activity [Visel et al., 2009]. ChIP-seq

technology together with suitable antibodies has made genome-wide data on these marks

available in multiple cell-lines of several model organisms. For example, this data has

been used to estimate that hundreds of thousands of enhancers exist in the human

genome [Shen et al., 2012,Dunham et al., 2012,Zhu et al., 2013]. The ENCODE project
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has such data in many human and mouse cell lines and the modENCODE project has

similar data for several Caenorhabditis and Drosophila species.

To summarise, it is now possible to study tissue-specific TF binding by analysing tissue-

specific enhancers from different cell lines. These enhancers have been identified on a

genomic scale. The STEME algorithm could identify motifs that are relatively prevalent

in the enhancers of particular tissues as compared to other tissues. The BiFA algorithm

could apply these motifs to provide TFBS predictions as data for the transcriptional

programs model. Recalling that the transcriptional programs model is a hierarchical

Dirichlet process, it is easy to imagine extending the hierarchy to include one or more

tissue-specific levels. These extra levels could capture tissue-specific TF interactions.

Another technology that will help our understanding of transcriptional regulatory net-

works is Chromosome Conformation Capture (3C) [Dekker et al., 2002] and its exten-

sions: Circularized Chromosome Conformation Capture (4C) [Simonis et al., 2006,Zhao

et al., 2006] and Carbon-Copy Chromosome Conformation Capture (5C) [Dostie and

Dekker, 2007]. These techniques analyse the 3-dimensional spatial organisation of chro-

mosomes in the nucleus. They are relevant to transcriptional regulatory networks be-

cause they can determine which enhancers and genes are in close physical proximity.

This appears to be a frequent phenomenon even when they are well separated by ge-

nomic distance. Decoding transcriptional regulatory networks relies upon associating

enhancer activity with changes in gene expression. Historically it has been difficult to

reliably infer these associations. Until recently models designed to integrate expression

data with binding data have typically associated genomic binding locations with the

nearest gene. Whilst this is a practical solution given the lack of information, long-

range regulation is known to occur. However, it is not known how prevalent it is. 3C,

4C and 5C technology will help to investigate this. It would be possible to extend the

transcriptional programs model to incorporate expression data, perhaps in the same

way that Gerber et al. did [Gerber et al., 2007]. In this case, I would hope to include

chromosome conformation data in the model.

5.3.2 Technical extensions

Higher order background models

Both tasks of TFBS prediction and motif search rely on detecting TFBSs against a

background of genomic sequence. It is well known that 0-order Markov models do not

fit genomic sequences particularly well. Common conceptions exist that second or third

order models are suitable when a better fit is desired (see Section 1.4.3). However, recent

work has demonstrated that such common conceptions may be misplaced [Narlikar et al.,
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2013]. Narlikar et al. applied the Akaike information criterion (AIC) [Akaike, 1974] and

Bayesian information criterion (BIC) [Schwarz, 1978] model selection criteria to Markov

models of varying order. They studied the tasks of motif discovery and phylogeny

reconstruction and found that order 7 models were optimal for human genomes. They

suggest that the performance of many sequence analysis algorithms could be improved

easily through the determination of the best Markov order to use.

STEME as a full motif finder

The work described in Chapter 3 is an efficient approximation to the EM algorithm

at the core of the MEME algorithm. However, replacing this core with the STEME

algorithm results in a motif finder whose run-time is dominated by two other parts of

the MEME algorithm: the search for seeds (starting points for the EM algorithm) and

the significance calculations used to assess the discovered motifs. I have implemented

efficient solutions to both these problems. To search for seeds I have again used suffix

trees to implement an efficient algorithm. For the significance calculations I have made

a small generalisation to an existing efficient algorithm [Nagarajan et al., 2005] to adapt

it to the MEME algorithm. I have left this work outside the scope of this thesis but

I hope to publish it soon. A motif search web-server that uses this implementation is

available at http://sysbio.mrc-bsu.cam.ac.uk/STEME/.
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Appendix A

TFBS predictor ROC curves

In this appendix I provide a full set of ROC curves from the evaluation of phylogenetic

TFBS predictors in Chapter 2. The feint vertical lines show the FPR=5% threshold.

The black dotted lines show the expected performance of a random classifier. Note that

the plots on the right are the same as the left but the x-axis is scaled to show FPRs

between 0% and 10% and the y-axis is scaled to fit the data. The TFs are presented in

order of increasing information content of their PWMs as in Tables 2.1, 2.2 and 2.3.

A.1 H̊andstad sites benchmark
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A.2 Turnover benchmark
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A.3 modENCODE benchmark
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Glossary

adenine a nucleobase, complementary to thymine. 1

alternative hypothesis the hypothesis that supposes there is an effect. It is tested

against the null hypothesis. 18

AUC area under curve: a statistic that measures the performance of a classification

method defined as the area under the ROC curve. 20, 57

AUC50 a statistic that measures the performance of a classification method on those

examples scored higher than the first 50 FP. 20, 57

AUCFPR a statistic that measures the performance of a classification method up until

a certain FPR. 57

BBLS Bayesian branch length score: a scoring scheme that sums the expected total

branch lengths in a phylogenetic tree between all leaf nodes that represent a TFBS

(see Section 2.2.1). 40, 48, 50, 56, 73, 75

BiFA Binding Factor Analysis: an algorithm to predict TFBSs given phylogenetically

related sequences. 41

billboard a model of combinatorial TF binding where the positioning and orientation

of the TFBSs is unimportant. 7

BLS branch length score: a scoring scheme that sums the total branch lengths in a

phylogenetic tree between all leaf nodes that represent a TFBS (see Section 2.2.1).

37, 40

central sequence the primary sequence under consideration in a phylogenetic analysis.

37, 41, 42, 47, 54, 58, 67

chain a sequence of TFBSs that are conserved across multiple sequences. 44

145
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chain element a set of TFBSs for the same PWM, one in each sequence. That is, an

element of the maximal chain. 45

ChIP chromatin immunoprecipitation: a technique that determines which genomic

regions are associated with a protein. 10

chromatin the combination of DNA and proteins that make up the contents of the

nucleus of a cell. 6

chromosome a DNA macromolecule that carries genetic information. 1

cofactor a TF that synergistically encourages another TF to bind. 5

competitive binding when two or more TFs compete for a TFBS. 5

consensus sequence the sequence that a TF prefers to bind to. 3

CpG island a region of the genome with high CG dinucleotide count. 26

CpG suppression the effect whereby regions of the genome have a low CG dinucleotide

count. 26

CRM cis-regulatory module: a regulatory region of the genome containing multiple

TFBSs. 3

cytosine a nucleobase, complementary to guanine. 1

DamID DNA adenine methyltransferase identification: a technique that locates TFBSs

by expressing the proposed TF as a fusion protein with DNA methyltransferase.

10

DNA deoxyribonucleic acid: a nucleic acid. One of the three major macromolecules

essential for all known forms of life. 1

DNase I deoxyribonuclease I: a nuclease that cleaves DNA. 6, 9

DNase I footprinting an assay to detect protein-DNA binding using DNase I. 9

effector a molecule, chemical, or structure that regulates a pathway by increasing or

decreasing the pathway’s reaction rate. 48

EM algorithm Expectation-Maximisation algorithm: an algorithm that makes point

estimates of parameters in a probabilistic model that maximise the expected like-

lihood of the data. 16
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EMSA electrophoretic mobility shift assay: a common affinity electrophoresis tech-

nique used to study protein–DNA or protein–RNA interactions. 9

enhanceosome a model of combinatorial TF binding where the positioning and orien-

tation of the TFBSs is critical. 7

enhancer a regulatory region of the genome some distance from its target gene. 3

entropy measures the expected amount of information (or surprisal) given by a draw

from a distribution. The entropy can be seen as a measure of the uncertainty

associated with a distribution. 17

epigenetic modification a heritable change caused by mechanisms other than changes

to DNA sequence. 7

E-value the number of tests multiplied by the p-value. Suppose you performed (or

could have performed) N tests and the most extreme p-value you found was p.

The E-value is Np. 18

FDR false discovery rate: the percentage of positive predictions a classifier incorrectly

makes. 19, 57, 74

FN false negative: an incorrect negative prediction. 19, 54

FP false positive: an incorrect positive prediction. 19–21, 53, 130

FPR false positive rate: the number of false positives as a proportion of the total

negatives. 19–21, 57, 130

gene unit of genetic information. 1

gene expression process by which information from a gene is used to make a functional

gene product. 1

gene product product of gene expression, commonly a protein. 1

gene regulatory network a set of genes that interact with each other to control the

rates at which their gene products are expressed. 2

genome the sum of an individual’s inheritable traits. 1

guanine a nucleobase, complementary to cytosine. 1

in vivo footprinting assay an in vivo extension of the DNase I footprinting assay to

detect protein-DNA binding. 9
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IQR inter-quartile range: the difference between the first and third quartiles. 57, 64

KL-divergence Kullback-Leibler divergence: a measure of separation between two

probability distributions or densities, also known as the relative entropy. 15

likelihood function a function of the parameters of a probabilistic model that is equiv-

alent to the probability of the data given those parameters. 13

maximal chain the longest and most probable sequence of TFBSs that appear in all

the sequences in a BiFA analysis. 41

microarray a high-throughput screening method that typically measures expression

levels. 10

MITOMI mechanically induced trapping of molecular interactions: uses micro-fluidics

to determine the energy landscape of TF-DNA interactions. 10

MLE maximum likelihood estimate: an estimate of some parameters of a probabilistic

model that maximises the likelihood function. 16

motif finding the task of searching for a TF’s binding preferences in a set of sequences.

26

motif scanning the task of searching for TFBSs in a sequence given the TF’s sequence

preferences. 30

nucleobase part of each nucleotide. 1

nucleosome the basic unit of DNA packaging in eukaryotes. 6

null hypothesis the hypothesis that the alternative hypothesis is tested against. It

typically describes a default position. 18

one-hybrid system assays to detect protein-DNA binding by transforming cells with

a TF of interest and potential binding sequences. 10

PBM protein-binding microarray: a microarray that measures the affinity of TF-DNA

interactions. 10

pioneer TF a TF that remodels chromatin allowing other TFs to access the DNA. 6

PMM phylogenetic motif model: a model that describes how likely each base pair is

in a multiple alignment. Used to scan multiple alignments for instances of motifs

(see Section 2.2.1). 37, 38, 40, 74, 76
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position-specific prior a prior in a probabilistic model that depends on the location

in the genome. It is a flexible method of integrating diverse location data into

motif scanning and motif finding models. 36

probabilistic model a way of specifying a joint distribution over a set of random

variables. 11

promoter a genomic region near the TSS where the transcriptional machinery assem-

bles. 3

PSSM position specific scoring matrix: a matrix of scores for different bases at each

position in a TFBS. 30

p-value the probability of observing a test statistic at least as extreme as the test

statistic generated by the data if the null hypothesis is true. 18

PWM position weight matrix: a matrix of frequencies identifying how often each base

occurs at each position in a TFBS. 22, 38, 50

PWM scanning the task of searching for TFBSs in a sequence given the TF’s sequence

preferences. 30

RE response element: another term for a TFBS. 3

regulon a collection of genes or operons under regulation by the same TF. 37

related sequence a sequence that is phylogenetically related to the central sequence.

37, 41, 47, 67

reporter gene a gene that is attached to a regulatory region of interest. The expression

of the gene normally results in a phenotype that can be measured (or reported).

10

RNA ribonucleic acid: a nucleic acid. One of the three major macromolecules essential

for all known forms of life. 1

ROC receiver operating characteristic: a comparison of the performance of a binary

classifier as the discrimination threshold varies. 19, 20, 57

SELEX systematic evolution of ligands by exponential enrichment: a method to de-

termine which sequences from a random library a TF binds to. 10

STEME algorithm an approximation to the EM algorithm that uses suffix trees. 78
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surprisal a measure of the information content associated with the outcome of a ran-

dom variable. Less likely outcomes have higher surprisals. 16

TF transcription factor: a protein that affects the rate of transcription of a gene, usually

by binding to DNA at a TFBS. 3

TFBS transcription factor binding site: the location on the DNA that a TF binds to.

3

thymine a nucleobase, complementary to adenine. 1

TN true negative: a correct negative prediction. 19, 53

TP true positive: a correct positive prediction. 19, 53

TPR true positive rate: the number of true positives as a proportion of the total

positives. 19, 40

transcription the first stage in gene expression in which DNA is copied into RNA. 2

transcriptional program transcriptional program: a set of TFs that act in a coordi-

nated fashion to regulate a set of target genes. 95

TSS transcription start site: the genomic location where transcription of a gene starts.

3

variational inference a Bayesian inference technique that approximates the posterior

distribution over the hidden variables in a probabilistic model. 17

WS weighted sum: a scoring scheme that sums weighted motif scores across species in

a phylogenetic tree (see Section 2.2.1). 37, 50, 56, 73, 75
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son, R. C., Huppert, J., Sidow, A., Taylor, J., Trumbower, H., Zody, M. C., Guigó,
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D. and Collignon, J. (2011). Nodal cis-regulatory elements reveal epiblast and primi-

tive endoderm heterogeneity in the peri-implantation mouse embryo. Developmental

Biology 349, 350–362.

[Grant et al., 2011] Grant, C. E., Bailey, T. L. and Noble, W. S. (2011). FIMO: Scan-

ning for Occurrences of a Given Motif. Bioinformatics 27, 1017–1018.

[Gruber and Gross, 2003] Gruber, T. M. and Gross, C. A. (2003). Multiple sigma sub-

units and the partitioning of bacterial transcription space. Annual Review of Micro-

biology 57, 441–466.



BIBLIOGRAPHY 165

[Grundy et al., 1996] Grundy, W. N., Bailey, T. L. and Elkan, C. P. (1996). ParaMEME:

A parallel implementation and a web interface for a DNA and protein motif discovery

tool. Computer applications in the biosciences: CABIOS 12, 303–310.

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences: Com-

puter Science and Computational Biology. Cambridge University Press.

[Halpern and Bruno, 1998] Halpern, A. L. and Bruno, W. J. (1998). Evolutionary dis-

tances for protein-coding sequences: modeling site-specific residue frequencies. Molec-

ular biology and evolution 15, 910–917.

[H̊andstad et al., 2011] H̊andstad, T., Rye, M. B., Drabløs, F. and Sætrom, P. (2011). A

ChIP-Seq Benchmark Shows That Sequence Conservation Mainly Improves Detection

of Strong Transcription Factor Binding Sites. PLoS ONE 6, e18430.

[Hannenhalli and Wang, 2005] Hannenhalli, S. and Wang, L.-S. (2005). Enhanced po-

sition weight matrices using mixture models. Bioinformatics 21, i204–i212.

[Hasegawa et al., 1985] Hasegawa, M., Kishino, H. and Yano, T. (1985). Dating of the

human-ape splitting by a molecular clock of mitochondrial DNA. Journal of molecular

evolution 22, 160–174.

[Hawkins et al., 2009] Hawkins, J., Grant, C., Noble, W. S. and Bailey, T. L. (2009).

Assessing phylogenetic motif models for predicting transcription factor binding sites.

Bioinformatics 25, i339–i347.

[He et al., 2011] He, Q., Bardet, A. F., Patton, B., Purvis, J., Johnston, J., Paulson,

A., Gogol, M., Stark, A. and Zeitlinger, J. (2011). High conservation of transcription

factor binding and evidence for combinatorial regulation across six Drosophila species.

Nature Genetics 43, 414–420.

[He et al., 2010] He, X., Samee, M. A. H., Blatti, C. and Sinha, S. (2010).

Thermodynamics-Based Models of Transcriptional Regulation by Enhancers: The

Roles of Synergistic Activation, Cooperative Binding and Short-Range Repression.

PLoS Computational Biology 6, e1000935.

[Heintzman et al., 2009] Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour,

P., Stark, A., Harp, L. F., Ye, Z., Lee, L. K., Stuart, R. K., Ching, C. W., Ching, K. A.,

Antosiewicz-Bourget, J. E., Liu, H., Zhang, X., Green, R. D., Lobanenkov, V. V.,

Stewart, R., Thomson, J. A., Crawford, G. E., Kellis, M. and Ren, B. (2009). Histone

modifications at human enhancers reflect global cell-type-specific gene expression.

Nature 459, 108–112.



166 BIBLIOGRAPHY

[Heintzman et al., 2007] Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching,

C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang,

W., Weng, Z., Green, R. D., Crawford, G. E. and Ren, B. (2007). Distinct and

predictive chromatin signatures of transcriptional promoters and enhancers in the

human genome. Nature Genetics 39, 311–318.

[Hesselberth et al., 2009] Hesselberth, J. R., Chen, X., Zhang, Z., Sabo, P. J., Sand-

strom, R., Reynolds, A. P., Thurman, R. E., Neph, S., Kuehn, M. S., Noble, W. S.,

Fields, S. and Stamatoyannopoulos, J. A. (2009). Global mapping of protein-DNA

interactions in vivo by digital genomic footprinting. Nature Methods 6, 283–289.

[Hinton and van Camp, 1993] Hinton, G. E. and van Camp, D. (1993). Keeping the

neural networks simple by minimizing the description length of the weights. In Pro-

ceedings of the sixth annual conference on Computational learning theory COLT ’93

p. 5–13, ACM, New York, NY, USA.

[Ho Sui et al., 2007] Ho Sui, S. J., Fulton, D. L., Arenillas, D. J., Kwon, A. T. and

Wasserman, W. W. (2007). oPOSSUM: integrated tools for analysis of regulatory

motif over-representation. Nucleic Acids Research 35, W245–W252.

[Hochschild and Ptashne, 1986] Hochschild, A. and Ptashne, M. (1986). Cooperative

binding of lambda repressors to sites separated by integral turns of the DNA helix.

Cell 44, 681–687.

[Hu et al., 2005] Hu, J., Li, B. and Kihara, D. (2005). Limitations and potentials of

current motif discovery algorithms. Nucleic Acids Research 33, 4899–4913.

[Hubbard et al., 2007] Hubbard, T. J. P., Aken, B. L., Beal, K., Ballester, B., Cac-

camo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T., Down, T.,

Dyer, S. C., Fitzgerald, S., Fernandez-Banet, J., Graf, S., Haider, S., Hammond,

M., Herrero, J., Holland, R., Howe, K., Howe, K., Johnson, N., Kahari, A., Keefe,

D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Melsopp, C., Megy, K.,

Meidl, P., Ouverdin, B., Parker, A., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy,

I., Severin, J., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vo-

gel, J., White, S., Wood, M., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez,

X. M., Flicek, P., Kasprzyk, A., Proctor, G., Searle, S., Smith, J., Ureta-Vidal, A.

and Birney, E. (2007). Ensembl 2007. Nucleic Acids Research 35, D610–D617.

[Ingham, 1988] Ingham, P. W. (1988). The molecular genetics of embryonic pattern

formation in Drosophila. Nature 335, 25–34.



BIBLIOGRAPHY 167

[Jaakkola, 1997] Jaakkola, T. S. (1997). Variational methods for inference and estima-

tion in graphical models. Thesis Massachusetts Institute of Technology. Thesis (Ph.

D.)–Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences,

1997.

[Jaynes, 2003] Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cam-

bridge University Press.

[Jeffreys, 1935] Jeffreys, H. (1935). Some Tests of Significance, Treated by the Theory

of Probability. Mathematical Proceedings of the Cambridge Philosophical Society 31,

203–222.

[Jeffreys, 1998] Jeffreys, H. (1998). Theory of Probability, Third Edition. Oxford Uni-

versity Press.

[Jensen et al., 2007] Jensen, S. T., Chen, G. and Stoeckert, Jr., C. J. (2007). Bayesian

variable selection and data integration for biological regulatory networks. Annals of

Applied Statistics 1, 612–633.

[Ji et al., 2008] Ji, H., Jiang, H., Ma, W., Johnson, D. S., Myers, R. M. and Wong,

W. H. (2008). An integrated software system for analyzing ChIP-chip and ChIP-seq

data. Nature Biotechnology 26, 1293–1300.

[Johnson et al., 2007] Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007).

Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science 316, 1497–

1502.

[Johnston and Nüsslein-Volhard, 1992] Johnston, D. S. and Nüsslein-Volhard, C.

(1992). The origin of pattern and polarity in the Drosophila embryo. Cell 68,

201–219.

[Jordan, 2004] Jordan, M. I. (2004). Graphical models. Statistical Science 19, 140–155.

[Jordan et al., 1999] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K.

(1999). An introduction to variational methods for graphical models. Machine learning

37, 183–233.

[Joshi et al., 2005] Joshi, B., Ordonez-Ercan, D., Dasgupta, P. and Chellappan, S.

(2005). Induction of human metallothionein 1G promoter by VEGF and heavy met-

als: differential involvement of E2F and metal transcription factors. Oncogene 24,

2204–2217.



168 BIBLIOGRAPHY

[Jothi et al., 2008] Jothi, R., Cuddapah, S., Barski, A., Cui, K. and Zhao, K. (2008).

Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.

Nucleic Acids Research 36, 5221–5231.

[Jukes and Cantor, 1969] Jukes, T. and Cantor, C. (1969). Evolution of Protein

Molecules. In Mammalian Protein Metabolism, (Munro, H., ed.), pp. 121–132. Aca-

demic Press New York.

[Kanehisa, 2006] Kanehisa, M. (2006). From genomics to chemical genomics: new de-

velopments in KEGG. Nucleic Acids Research 34, D354–D357.

[Kass and Raftery, 1995] Kass, R. E. and Raftery, A. E. (1995). Bayes Factors. Journal

of the American Statistical Association 90, 773.

[Keene et al., 1981] Keene, M. A., Corces, V., Lowenhaupt, K. and Elgin, S. C. (1981).

DNase I hypersensitive sites in Drosophila chromatin occur at the 5’ ends of regions of

transcription. Proceedings of the National Academy of Sciences of the United States

of America 78, 143–146.
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R., Hornischer, K., Karas, D., Kel, A. E., Kel-Margoulis, O. V., Kloos, D.-U., Land,

S., Lewicki-Potapov, B., Michael, H., Münch, R., Reuter, I., Rotert, S., Saxel, H.,

Scheer, M., Thiele, S. and Wingender, E. (2003). TRANSFAC R©: transcriptional

regulation, from patterns to profiles. Nucleic Acids Research 31, 374–378.



172 BIBLIOGRAPHY

[May et al., 2011] May, D., Blow, M. J., Kaplan, T., McCulley, D. J., Jensen, B. C.,

Akiyama, J. A., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Afzal, V., Simp-

son, P. C., Rubin, E. M., Black, B. L., Bristow, J., Pennacchio, L. A. and Visel, A.

(2011). Large-scale discovery of enhancers from human heart tissue. Nature Genetics

44, 89–93.

[McArthur et al., 2001] McArthur, M., Gerum, S. and Stamatoyannopoulos, G. (2001).

Quantification of DNaseI-sensitivity by Real-time PCR: Quantitative Analysis of

DNaseI-hypersensitivity of the Mouse β-Globin LCR. Journal of molecular biology

313, 27.

[McCreight, 1976] McCreight, E. M. (1976). A space-economical suffix tree construction

algorithm. Journal of the ACM (JACM) 23, 262–272.

[McLeay et al., 2012] McLeay, R. C., Lesluyes, T., Partida, G. C. and Bailey, T. L.

(2012). Genome-wide in silico prediction of gene expression. Bioinformatics 28,

2789–2796.

[Merika and Thanos, 2001] Merika, M. and Thanos, D. (2001). Enhanceosomes. Current

opinion in genetics & development 11, 205–208.

[Mikkelsen et al., 2010] Mikkelsen, T. S., Xu, Z., Zhang, X., Wang, L., Gimble, J. M.,

Lander, E. S. and Rosen, E. D. (2010). Comparative Epigenomic Analysis of Murine

and Human Adipogenesis. Cell 143, 156–169.

[Moses et al., 2003] Moses, A., Chiang, D., Kellis, M., Lander, E. and Eisen, M. (2003).

Position specific variation in the rate of evolution in transcription factor binding sites.

BMC Evolutionary Biology 3, 19.

[Moses et al., 2004a] Moses, A. M., Chiang, D. Y. and Eisen, M. B. (2004a). Phyloge-

netic motif detection by expectation-maximization on evolutionary mixtures. Pacific

Symposium on Biocomputing. Pacific Symposium on Biocomputing vol, 324–335.

[Moses et al., 2004b] Moses, A. M., Chiang, D. Y., Pollard, D. A., Iyer, V. N., Eisen,

M. B. et al. (2004b). MONKEY: identifying conserved transcription-factor binding

sites in multiple alignments using a binding site-specific evolutionary model. Genome

Biol 5, R98.

[Moses et al., 2006] Moses, A. M., Pollard, D. A., Nix, D. A., Iyer, V. N., Li, X.-Y., Big-

gin, M. D. and Eisen, M. B. (2006). Large-Scale Turnover of Functional Transcription

Factor Binding Sites in Drosophila. PLoS Computational Biology 2, e130.



BIBLIOGRAPHY 173

[Mujtaba et al., 2007] Mujtaba, S., Zeng, L. and Zhou, M.-M. (2007). Structure and

acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527.

[Mukherjee et al., 2004] Mukherjee, S., Berger, M. F., Jona, G., Wang, X. S., Muzzey,

D., Snyder, M., Young, R. A. and Bulyk, M. L. (2004). Rapid Analysis of the DNA

Binding Specificities of Transcription Factors with DNA Microarrays. Nature genetics

36, 1331–1339.

[Nagarajan et al., 2005] Nagarajan, N., Jones, N. and Keich, U. (2005). Computing the

P-value of the information content from an alignment of multiple sequences. Bioin-

formatics 21, i311–i318.

[Nakajima et al., 2010] Nakajima, A., Isshiki, T., Kaneko, K. and Ishihara, S. (2010).

Robustness under Functional Constraint: The Genetic Network for Temporal Expres-

sion in Drosophila Neurogenesis. PLoS Computational Biology 6, e1000760.

[Narlikar et al., 2013] Narlikar, L., Mehta, N., Galande, S. and Arjunwadkar, M. (2013).

One size does not fit all: On how Markov model order dictates performance of genomic

sequence analyses. Nucleic Acids Research 41, 1416–1424.

[Naughton et al., 2006] Naughton, B. T., Fratkin, E., Batzoglou, S. and Brutlag, D. L.

(2006). A graph-based motif detection algorithm models complex nucleotide depen-

dencies in transcription factor binding sites. Nucleic acids research 34, 5730–5739.

[Neal and Hinton, 1998] Neal, R. and Hinton, G. E. (1998). A View Of The Em Al-

gorithm That Justifies Incremental, Sparse, And Other Variants. In Learning in

Graphical Models p. 355–368, Kluwer Academic Publishers.

[Newburger and Bulyk, 2009] Newburger, D. E. and Bulyk, M. L. (2009). UniPROBE:

an online database of protein binding microarray data on protein-DNA interactions.

Nucleic Acids Research 37, D77–D82.

[Nishida et al., 2008] Nishida, K., Frith, M. C. and Nakai, K. (2008). Pseudocounts for

transcription factor binding sites. Nucleic Acids Research 37, 939–944.

[Odom et al., 2007] Odom, D. T., Dowell, R. D., Jacobsen, E. S., Gordon, W., Danford,

T. W., MacIsaac, K. D., Rolfe, P. A., Conboy, C. M., Gifford, D. K. and Fraenkel, E.

(2007). Tissue-specific transcriptional regulation has diverged significantly between

human and mouse. Nature Genetics 39, 730–732.

[Ohlsson et al., 2001] Ohlsson, R., Renkawitz, R. and Lobanenkov, V. (2001). CTCF is

a uniquely versatile transcription regulator linked to epigenetics and disease. Trends

in Genetics 17, 520–527.



174 BIBLIOGRAPHY

[Oliphant et al., 1989] Oliphant, A. R., Brandl, C. J. and Struhl, K. (1989). Defining the

sequence specificity of DNA-binding proteins by selecting binding sites from random-

sequence oligonucleotides: analysis of yeast GCN4 protein. Molecular and Cellular

Biology 9, 2944–2949.

[Palumbo and Newberg, 2010] Palumbo, M. J. and Newberg, L. A. (2010). Phyloscan:

locating transcription-regulating binding sites in mixed aligned and unaligned se-

quence data. Nucleic Acids Research 38, W268–W274.

[Panne et al., 2007] Panne, D., Maniatis, T. and Harrison, S. C. (2007). An Atomic

Model of the Interferon-β Enhanceosome. Cell 129, 1111–1123.

[Papatsenko and Levine, 2007] Papatsenko, D. and Levine, M. (2007). A rationale for

the enhanceosome and other evolutionarily constrained enhancers. Current biology:

CB 17, R955–957.

[Park, 2009] Park, P. J. (2009). ChIP–seq: advantages and challenges of a maturing

technology. Nature Reviews Genetics 10, 669–680.

[Pavesi et al., 2001] Pavesi, G., Mauri, G. and Pesole, G. (2001). An algorithm for

finding signals of unknown length in DNA sequences. Bioinformatics 17, S207–S214.

[Phoophakdee and Zaki, 2008] Phoophakdee, B. and Zaki, M. J. (2008). TRELLIS+:

an effective approach for indexing genome-scale sequences using suffix trees. Pacific

Symposium on Biocomputing. Pacific Symposium on Biocomputing vol, 90–101.

[Piipari et al., 2010] Piipari, M., Down, T. A. and Hubbard, T. J. P. (2010). Metamotifs-

a generative model for building families of nucleotide position weight matrices. BMC

bioinformatics 11, 348.

[Pique-Regi et al., 2010] Pique-Regi, R., Degner, J. F., Pai, A. A., Gaffney, D. J., Gilad,

Y. and Pritchard, J. K. (2010). Accurate inference of transcription factor binding from

DNA sequence and chromatin accessibility data. Genome Research 21, 447–455.

[Pizzi et al., 2011] Pizzi, C., Rastas, P. and Ukkonen, E. (2011). Finding Significant

Matches of Position Weight Matrices in Linear Time. IEEE/ACM Transactions on

Computational Biology and Bioinformatics 8, 69–79.

[Portales-Casamar et al., 2009] Portales-Casamar, E., Thongjuea, S., Kwon, A. T., Are-

nillas, D., Zhao, X., Valen, E., Yusuf, D., Lenhard, B., Wasserman, W. W. and

Sandelin, A. (2009). JASPAR 2010: the greatly expanded open-access database of

transcription factor binding profiles. Nucleic Acids Research 38, D105–D110.



BIBLIOGRAPHY 175

[Prakash et al., 2004] Prakash, A., Blanchette, M., Sinha, S. and Tompa, M. (2004).

Motif discovery in heterogeneous sequence data. Pacific Symposium on Biocomputing.

Pacific Symposium on Biocomputing vol, 348–359.

[Qi et al., 2005] Qi, Y., Ye, P. and Bader, J. S. (2005). Genetic interaction motif finding

by expectation maximization – a novel statistical model for inferring gene modules

from synthetic lethality. BMC Bioinformatics 6, 288.

[Quandt et al., 1995] Quandt, K., Frech, K., Karas, H., Wingender, E. and Werner,

T. (1995). MatInd and MatInspector: new fast and versatile tools for detection of

consensus matches in nucleotide sequence data. Nucleic Acids Research 23, 4878–

4884.

[Rajewsky et al., 2002] Rajewsky, N., Vergassola, M., Gaul, U. and Siggia, E. D. (2002).

Computational detection of genomic cis-regulatory modules applied to body pattern-

ing in the early Drosophila embryo. BMC Bioinformatics 3, 30.

[Reid et al., 2010] Reid, J., Evans, K., Dyer, N., Wernisch, L. and Ott, S. (2010). Vari-

able structure motifs for transcription factor binding sites. BMC genomics 11, 30.

[Reid et al., 2009] Reid, J., Ott, S. and Wernisch, L. (2009). Transcriptional programs:

Modelling higher order structure in transcriptional control. BMC bioinformatics 10,

218.

[Reid and Wernisch, 2011] Reid, J. and Wernisch, L. (2011). STEME: efficient EM to

find motifs in large data sets. Nucleic acids research 39, e126–e126.
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Rouzé, P. and Moreau, Y. (2001). A higher-order background model improves the

detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17,

1113–1122.

[Thomas-Chollier et al., 2011] Thomas-Chollier, M., Defrance, M., Medina-Rivera, A.,

Sand, O., Herrmann, C., Thieffry, D. and van Helden, J. (2011). RSAT 2011: regu-

latory sequence analysis tools. Nucleic Acids Research 39, W86–W91.

[Thomson et al., 2010] Thomson, J. P., Skene, P. J., Selfridge, J., Clouaire, T., Guy, J.,

Webb, S., Kerr, A. R. W., Deaton, A., Andrews, R., James, K. D., Turner, D. J.,

Illingworth, R. and Bird, A. (2010). CpG islands influence chromatin structure via

the CpG-binding protein Cfp1. Nature 464, 1082–1086.

[Tompa et al., 2005] Tompa, M., Li, N., Bailey, T. L., Church, G. M., Moor, B. D.,

Eskin, E., Favorov, A. V., Frith, M. C., Fu, Y., Kent, W. J., Makeev, V. J., Mironov,

A. A., Noble, W. S., Pavesi, G., Pesole, G., Régnier, M., Simonis, N., Sinha, S., Thijs,
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